Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 018901    DOI: 10.1088/0256-307X/30/1/018901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Micro-Community Structure Merging Model Using a Community Sample Matrix
LI Lin1**, PENG Hao1, LU Song-Nian1, TIAN Ying2
1Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240
2Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
LI Lin, PENG Hao, LU Song-Nian et al  2013 Chin. Phys. Lett. 30 018901
Download: PDF(466KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Detecting an overlapping and hierarchical community structure can give a significant insight into structural and functional properties in complex networks. We propose a micro-community structure merging model to detect overlapping and hierarchical communities. The algorithm maps communities to random variables using the community sample matrix to evaluate similarity between communities. After finding density-based micro-community structures, the algorithm merges these reasonable micro-communities iteratively to form communities. Simulation results in three real networks show that the proposed algorithm is more accurate than some existing mechanisms. In this way, we can obtain a detailed understanding of the overlapping and hierarchical communities.
Received: 02 July 2012      Published: 04 March 2013
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.20.Ff (Computer science and technology)  
  89.20.Hh (World Wide Web, Internet)  
  89.75.Hc (Networks and genealogical trees)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/018901       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/018901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Lin
PENG Hao
LU Song-Nian
TIAN Ying
[1] Strogatz S H 2001 Nature 410 268
[2] Girvan M and Nweman M E J 2002 Proc. Natl. Acad. Sci. USA 99 7821
[3] Shang Y L 2011 Chin. Phys. Lett. 28 068903
[4] Y A N G Z C 2009 Chin. Phys. Lett. 26 098903
[5] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113
[6] Fiedler M 1973 Czech Math. J. 23 298
[7] Kernighan B W and Lin S 1970 Bell. Syst. Tech. J. 49 291
[8] Chen D B, Fu Y and Shang M S 2009 Physica A 388 2741
[9] Zhang Z L, Jiang X, Ma L L, Tang S T and Zheng Z M 2011Physica A 390 1171
[10] Guo C H and Zhao H P 2012 Physica A 391 2268
[11] Palla G, Derenyi I, Farkas I and Vicsek T 2005 Nature 435 814
[12] Shang M S, Chen D B and Zhou T 2010 Chin. Phys. Lett. 27 058901
[13] Chen D B, Shang M S, Lv Z H and Fu Y 2010 Physica A 389 4177
[14] Huang J B, Sun H L, Han J W and Feng B Q 2011 Physica A 390 2160
[15] Lancichinetti A, Fortunato S and Kertesz J 2009 New J. Phys. 11 033015
[16] Feng Z D, Xu X, Yuruk N and Schweiger DaWak'07 (Regensburg, Germany 3–7 September 2007) p 380
[17] Zachary W W 1977 J. Anthropological Res. 33 452
[18] Newman M E J 2006 Phys. Rev. E 74 036104
[19] Shen H W, Cheng X Q and Guo J F 2009 J. Stat. Mech. 2009 P07042
[20] Evans T S and Lambiotte R 2009 Phys. Rev. E 80 016105
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 018901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 018901
[3] Ai-Zhi Liu, Yan-Ling Zhang, Chang-Yin Sun. Way of Breaking Links in the Evolution of Cooperation[J]. Chin. Phys. Lett., 2018, 35(9): 018901
[4] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 018901
[5] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 018901
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 018901
[7] Chang-Quan Chen, Qiong-Lin Dai, Wen-Chen Han, Jun-Zhong Yang. Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy[J]. Chin. Phys. Lett., 2017, 34(2): 018901
[8] Jian Jiang, Rui Zhang, Long Guo, Wei Li, Xu Cai. Network Aggregation Process in Multilayer Air Transportation Networks[J]. Chin. Phys. Lett., 2016, 33(10): 018901
[9] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 018901
[10] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 018901
[11] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 018901
[12] ZHANG Wen, LI Yao-Sheng, XU Chen. Co-operation and Phase Behavior under the Mixed Updating Rules[J]. Chin. Phys. Lett., 2015, 32(11): 018901
[13] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 018901
[14] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 018901
[15] DU Peng, XU Chen, ZHANG Wen. Cooperation and Phase Separation Driven by a Coevolving Snowdrift Game[J]. Chin. Phys. Lett., 2015, 32(5): 018901
Viewed
Full text


Abstract