Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 012101    DOI: 10.1088/0256-307X/30/1/012101
NUCLEAR PHYSICS |
Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional
TANG Zhong-Hua, LI Jia-Xing**, JI Juan-Xia, ZHOU Tao
School of Physical Science and Technology, Southwest University, Chongqing 400715
Cite this article:   
TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia et al  2013 Chin. Phys. Lett. 30 012101
Download: PDF(1051KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The potential energy surfaces and density distributions of ground states in even-mass Be isotopes are studied by using the point-coupling covariant density functional theory with the PC-F1 effective interaction. The clustering structure is exhibited automatically in most of the Be isotopes. The results indicate that 6Be has an α+2p clustering structure, while 8,10,14Be have the 2α clustering structure. The αα distances and the corresponding quadrupole deformation parameters have a similar evolution trend against the neutron number.
Received: 01 June 2012      Published: 04 March 2013
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  21.60.Gx (Cluster models)  
  21.10.Gv (Nucleon distributions and halo features)  
  21.10.Pc (Single-particle levels and strength functions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/012101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/012101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Zhong-Hua
LI Jia-Xing
JI Juan-Xia
ZHOU Tao
[1] Wheeler J A 1937 Phys. Rev. 52 1083
[2] Wheeler J A 1937 Phys. Rev. 52 1107
[3] Fulton B R 1994 Z. Phys. A 349 227
[4] von Oertzen W, Freer M and Kanada-En'yo Y 2006 Phys. Rep. 432 43
[5] Geng L S, Meng J and Toki H 2007 Chin. Phys. Lett. 24 1865
[6] Zhang W et al 2010 Chin. Phys. Lett. 27 102103
[7] Freer M, Merchant A C 1997 J. Phys. G 23 261
[8] Kanada-En'yo Y and Horiuchi H 2001 Prog. Theor. Phys. Suppl. 142 205
[9] Horiuchi H and Kanada-En'yo Y 1997 Nucl. Phys. A 616 394
[10] Seya M, Kohno M and Nagata S 1981 Prog. Theor. Phys. 65 204
[11] Fedotov S I et al 2004 Phys. Rev. C 70 014006
[12] Ichikawa T et al 2011 Phys. Rev. Lett. 107 112501
[13] Buck B et al 1995 Phys. Rev. C 52 1840
[14] Taniguchi Y, Kanada-En'yo Y and Kimura M 2009 Phys. Rev. C 80 044316
[15] Taniguchi Y et al 2007 Phys. Rev. C 76 044317
[16] Saito A et al 2010 Mod. Phys. Lett. A 25 1858
[17] Ye Y L et al 2005 J. Phys. G 31 S1647
[18] Jia F et al 2009 Chin. Phys. Lett. 26 032301
[19] Ye Y L et al 2012 Chin. Phys. C 36 127
[20] Mangelson N et al 1966 Nucl. Phys. 88 137
[21] Buck B, Friedrich H, Wheatley C 1977 Nucl. Phys. A 275 246
[22] Ashwood N I et al 2004 Phys. Lett. B 580 129
[23] Kanada-En'yo Y and Kimura M 2010 Lect. Notes Phys. 818 129
[24] Neff T, Feldmeier H and Roth R 2005 Nucl. Phys. A 752 321
[25] Descouvemont P and Baye D 2001 Phys. Lett. B 505 71
[26] Duarte S B et al 2002 At. Data Nucl. DataTables 80 235
[27] Yan T Z et al 2007 Chin. Phys. B 16 2676
[28] Qian Y B et al 2010 Chin. Phys. Lett. 27 112301
[29] Ren Z Z, Xu C and Wang Z J 2004 Phys. Rev. C 70 034304
[30] Ni D D and Ren Z Z 2011 Phys. Rev. C 83 014310
[31] Bender M, Heenen P H and Reinhard P G 2003 Rev. Mod. Phys. 75 121
[32] Fayans S A et al 2000 Nucl. Phys. A 676 49
[33] Vretenar D et al 2005 Phys. Rep. 409 101
[34] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470
[35] Arumugam P et al 2005 Phys. Rev. C 71 064308
[36] Zhong M F et al 2010 Chin. Phys. Lett. 27 022103
[37] Ebran J P et al 2012 Nature 487 341
[38] Zhao P W et al 2010 Phys. Rev. C 82 054319
[39] Yao J M et al 2009 Phys. Rev. C 79 044312
[40] Yao J M et al 2010 Phys. Rev. C 81 044311
[41] Nik?i? T et al 2009 Phys. Rev. C 79 034303
[42] Zhao P W et al 2011 Phys. Rev. Lett. 107 122501
[43] Bürvenich T et al 2002 Phys. Rev. C 65 044308
[44] Xiang J et al 2012 Nucl. Phys. A 873 1
[45] Ring P and Schuck P 1980 Nuclear Many-body Problem (Heidelberg: Springer) p 268
[46] Yao J M et al 2011 Phys. Rev. C 84 024306
[47] National Nuclear Data Center Brookhaven National Laboratory http://www.nndc.bnl.gov/
[48] Ren Z Z et al 1995 Phys. Lett. B 351 11
[49] Sugahara Y et al 1996 Prog. Theor. Phys. 96 1165
[50] Yao J M, Bender M and Heenen P H 2012 arXiv:1211.2103v1[nucl-th]
[51] Yao J M et al 2012 Phys. Rev. C 86 014310
Related articles from Frontiers Journals
[1] Jiawei Chen, Junchen Pei, Yu Qiang, and Jihuai Chi. Fission Properties of Neutron-Rich Nuclei around the End Point of $r$-Process[J]. Chin. Phys. Lett., 2023, 40(1): 012101
[2] Jun Xu. Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach[J]. Chin. Phys. Lett., 2021, 38(4): 012101
[3] Chen Liu , Shouyu Wang, Bin Qi , and Hui Jia . Possible Candidates for Chirality in the Odd-Odd As Isotopes[J]. Chin. Phys. Lett., 2020, 37(11): 012101
[4] Yan-Zhao Wang, Yang Li, Chong Qi, Jian-Zhong Gu. Pairing Effects on Bubble Nuclei[J]. Chin. Phys. Lett., 2019, 36(3): 012101
[5] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Jiang Liu, Li-Gang Cao. Giant Monopole Resonance and Nuclear Incompressibility of Hypernuclei[J]. Chin. Phys. Lett., 2018, 35(6): 012101
[6] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Li-Gang Cao. Pygmy and Giant Dipole Resonances in Proton-Rich Nuclei $^{17,18}$Ne[J]. Chin. Phys. Lett., 2017, 34(8): 012101
[7] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 012101
[8] Jing Peng, Wen-Qiang Xu. Tilted Axis Rotation of $^{57}$Mn in Covariant Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(01): 012101
[9] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 012101
[10] WANG Yan-Zhao, GU Jian-Zhong, YU Guo-Liang, HOU Zhao-Yu. Tensor Force Effect on Shape Coexistence of N=28 Neutron-Rich Isotones[J]. Chin. Phys. Lett., 2014, 31(10): 012101
[11] S. Unlu. Quasi Random Phase Approximation Predictions on Two-Neutrino Double Beta Decay Half-Lives to the First 2+ State[J]. Chin. Phys. Lett., 2014, 31(04): 012101
[12] WEN Pei-Wei, CAO Li-Gang . Spin-Flip Response Function of Finite Nuclei in a Fully Self-Consistent RPA Approach[J]. Chin. Phys. Lett., 2013, 30(5): 012101
[13] YANG Ding, CAO Li-Gang, MA Zhong-Yu. The Nuclear Incompressibility and Isoscalar Giant Dipole Resonance in Relativistic Continuum Random Phase Approximation[J]. Chin. Phys. Lett., 2013, 30(5): 012101
[14] YANG Ding, CAO Li-Gang, MA Zhong-Yu. Fully Self-Consistency in Relativistic Random Phase Approximation[J]. Chin. Phys. Lett., 2012, 29(11): 012101
[15] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 012101
Viewed
Full text


Abstract