CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Experimental Investigation of the Electronic Structure of Ca0.83La0.17Fe2As2 |
HUANG Yao-Bo1, RICHARD Pierre1**, WANG Ji-Hui2, WANG Xiao-Ping1,3, SHI Xun1,3, XU Nan1, WU Zheng2, LI Ang2, YIN Jia-Xin1, QIAN Tian1, LV Bing2, CHU Ching-Wu2, PAN Shu-Heng2,1, SHI Ming3, DING Hong1** |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Texas Center for Superconductivity and Department of Physics, University of Houston, TX 77204-5002, USA 3Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen PSI, Switzerland
|
|
Cite this article: |
HUANG Yao-Bo, RICHARD Pierre, WANG Ji-Hui et al 2013 Chin. Phys. Lett. 30 017402 |
|
|
Abstract We performed a combined angle-resolved photoemission spectroscopy and scanning tunneling microscopy study of the electronic structure of electron-doped Ca0.83La0.17Fe2As2. A surface reconstruction associated with the dimerization of As atoms is observed directly in the real space, as well as the consequent band folding in the momentum space. Besides this band folding effect, the Fermi surface topology of this material is similar to that reported previously for BaFe1.85Co0.15As2, with Γ-centered hole pockets quasi-nested to M-centered electron pockets by the antiferromagnetic wave vector. Although no superconducting gap is observed by ARPES possibly due to low superconducting volume fraction, a gap-like density of states depression of 7.7±2.9 meV is determined by scanning tunneling microscopy.
|
|
Received: 30 October 2012
Published: 04 March 2013
|
|
PACS: |
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
|
|
|
[1] Richard P, Nakayama K, Sato T, Neupane M, Xu Y M, Bowen J H, Chen G F, Luo J L, Wang N L, Dai X, Fang Z, Ding H and Takahashi T 2010 Phys. Rev. Lett. 104 137001 [2] Kimber S A J, Kreyssig A, Zhang Y Z, Jeschke H O, Valent H O, Yokaichiya F, Colombier E, Yan J, Hansen T C, Chatterji T, McQueeney R J, Canfield P C, Goldman A I and Argyriou D N 2009 Nat. Mater. 8 471 [3] Torikachvili M S, Bud'ko S L, Ni N and Canfield P C 2008 Phys. Rev. B 78 104527 [4] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512 [5] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [6] Lv B, Deng L, Gooch M, Wei F, Sun Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl. Acad. Sci. USA 108 15705 [7] Gao Z, Qi Y, Wang L, Wang D, Zhang X, Yao C, Wang C and Ma Y 2011 Europhys. Lett. 95 67002 [8] Saha S R, Butch N P, Drye T, Magill J, Ziemak S, Kirshenbaum K, Zavalij K, Lynn J W and Paglione J 2012 Phys. Rev. B 85 024525 [9] Richard P, Sato T, Nakayama K, Takahashi T and Ding H 2011 Rep. Prog. Phys. 74 124512 [10] Neupane M, Richard P, Xu Y M, Nakayama K, Sato T, Takahashi T, Federov A V, Xu G, Dai X, Fang Z, Wang Z, Chen G F, Wang N L, Wen H H and Ding H 2011 Phys. Rev. B 83 094522 [11] Hoffman J E 2011 Rep. Prog. Phys. 74 124513 [12] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712 [13] A Damascelli 2004 Phys. Scr. T109 61 [14] Terashima K, Sekiba Y, Bowen J H, Nakayama K, Kawahara T, Sato T, Richard P, Xu Y M, Li L J, Cao G H, Xu Z A, Ding H and Takahashi T 2009 Proc. Natl. Acad. Sci. USA 106 7330 [15] Liu C, Kondo T, Ni N, Palczewski A D, Bostwick A, Samolyuk G D, Khasanov R, Shi M, Rotenberg E, Bud'ko S L, Canfield P C and Kaminski A 2009 Phys. Rev. Lett. 102 167004 [16] Zhang Y, Wei J, Ou H W, Zhao J F, Zhou B, Chen F, Xu M, He C, Wu G, Chen H, Arita M, Shimada K, Namatame H, Taniguchi M, Chen X H and Feng D L 2009 Phys. Rev. Lett. 102 127003 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|