Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010304    DOI: 10.1088/0256-307X/30/1/010304
GENERAL |
Computation of Quantum Bound States on a Singly Punctured Two-Torus
CHAN Kar-Tim1*, Hishamuddin Zainuddin1,2, Saeid Molladavoudi2
1Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Laboratory of Computational Sciences and Mathematical Physics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Cite this article:   
CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi 2013 Chin. Phys. Lett. 30 010304
Download: PDF(771KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a quantum mechanical system on a singly punctured two-torus with bound states described by the Maass waveforms which are eigenfunctions of the hyperbolic Laplace–Beltrami operator. Since the discrete eigenvalues of the Maass cusp form are not known analytically, they are solved numerically using an adapted algorithm of Hejhal and Then to compute Maass cusp forms on the punctured two-torus. We report on the computational results of the lower lying eigenvalues for the punctured two-torus and find that they are doubly-degenerate. We also visualize the eigenstates of selected eigenvalues using GridMathematica.
Received: 11 October 2012      Published: 04 March 2013
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.40.-k (Geometry, differential geometry, and topology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010304       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHAN Kar-Tim
Hishamuddin Zainuddin
Saeid Molladavoudi
[1] Bogomolny E B, Georgeot B, Giannoni M J and Schmit C 1995 Chaos Solitons Fractals 5 1311
[2] Then H 2007 arXiv:0712.4322v1 [nlin.CD]
[3] Bolte J, Steil G and Steiner F 1992 Phys. Rev. Lett. 69 2188
[4] Gubin A and Santos L F 2012 Am. J. Phys. 80 246
[5] Gutzwiller M C 1983 Physica D 7 341
[6] Antoine M, Comtet A and Ouvry S 1990 J. Phys. A: Math. Gen. 23 3699
[7] Bogomolny E B, Georgeot B, Giannoni M J and Schmit C 1993 Phys. Rev. E 47 R2217
[8] Miyake T 1989 Modular Forms (Berlin: Springer)
[9] Siddig A A M, Shah N M and Zainuddin H 2009 Am. Inst. Phys. Conf. Ser. 1150 107
[10] Then H 2005 Math. Comp. Amer. Math. Soc. 74 363
[11] Dennis A H and Barry N R 1992 Exp. Math. 1 275
[12] Dennis A H 1999 IMA Ser. 109 291
[13] Str?mberg F 2011 LMS Lecture Notes Ser. 397 187
[14] Then H 2004 arXiv:math-ph/0305048v2
[15] Farmer D W and Lemurell S 2005 Math. Comp. Am. Math. Soc. 74 1967
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 010304
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 010304
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 010304
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 010304
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 010304
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 010304
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 010304
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 010304
[9] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 010304
[10] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 010304
[11] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 010304
[12] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 010304
[13] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 010304
[14] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 010304
[15] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 010304
Viewed
Full text


Abstract