Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 124211    DOI: 10.1088/0256-307X/29/12/124211
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Temporal, Spectral and Spatial Characterization of High-Energy Laser Pulse with Small Bandwidth Propagating through Long Path
DENG Xue-Wei, WANG Fang, JIA Huai-Ting, XIANG Yong, FENG Bin, LI Ke-Yu, ZHOU Li-Dan**
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900
Cite this article:   
DENG Xue-Wei, WANG Fang, JIA Huai-Ting et al  2012 Chin. Phys. Lett. 29 124211
Download: PDF(725KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Temporal, spectral and spatial characters of 0.3-nm-bandwidth high-energy laser pulse propagating through a long path are studied in detail in one newly constructed beamline of our laser facility. The evolution of propagation, pulse energy and near-field deterioration are analyzed theoretically and experimentally. Substituting argon for air is demonstrated effectively to suppress stimulated rotational Raman scattering and the experimental result provides operating criterion, and engineering parameters for the under-constructed beamlines.
Received: 01 March 2012      Published: 04 March 2013
PACS:  42.65.-k (Nonlinear optics)  
  34.50.-s (Scattering of atoms and molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/124211       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/124211
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Xue-Wei
WANG Fang
JIA Huai-Ting
XIANG Yong
FENG Bin
LI Ke-Yu
ZHOU Li-Dan
[1] Kelley P L 1965 Phys. Rev. Lett. 15 1005
[2] Stelmaszczyk K et al 2004 Appl. Phys. Lett. 85 3977
[3] Tzortzakis S et al 2000 Opt. Lett. 25 1270
[4] Thiell G, Graillot H, Joly P and Boscheron A 1999 Fusion Eng. Design 44 157
[5] Henesian M A, Swift C D and Murray J R 2007 UCRL-TR-234110 LRD 85-342 p 1
[6] Bordenave E and Chies T 2006 J. Phys. IV France 133 661
[7] Van Wonterghem B M et al 2004 Proc. SPIE 5341 55
[8] Penano R et al 2003 Phys. Rev. E 68 056502
[9] Henesian M A, Swift C D and Murray J R 1985 Opt. Lett. 10 565
[10] Wegner P J, Henesian M A and Speck D R 1992 Appl. Opt. 31 6414
[11] Lin Y, Kessler T J and Armstrong J J 1993 Proc. SPIE 1870 14
[12] Wegner P, Auerbach J, Biesiada T and Dixit S 2004 Proc. SPIE 5341 181
[13] Hunt J T 2000 UCRL-ID-138120-99 7-2 p 1
[14] Wang J et al 2011 Chin. Phys. Lett. 28 084211
[15] Shen Y R 2003 The principles of Nonlinear Optics (Hoboken, N.J.: Wiley-Interscience)
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 124211
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 124211
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 124211
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 124211
[5] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 124211
[6] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 124211
[7] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 124211
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 124211
[9] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 124211
[10] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 124211
[11] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 124211
[12] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 124211
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 124211
[14] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 124211
[15] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 124211
Viewed
Full text


Abstract