CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Growth of Self-Catalyzed InP Nanowires by Metalorganic Chemical Vapour Deposition |
LV Xiao-Long, ZHANG Xia**, YAN Xin, LIU Xiao-Long, CUI Jian-Gong, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min |
State Key Laboratory of Information Photonics & Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
LV Xiao-Long, ZHANG Xia, YAN Xin et al 2012 Chin. Phys. Lett. 29 126102 |
|
|
Abstract The fabrication of self-catalyzed InP nanowires (NWs) is investigated under different growth conditions. Indium droplets induced by surface reconstruction act as nucleation sites for NW growth. Vertical standing NWs with uniform cross sections are obtained under optimized conditions. It is confirmed that the growth rate of NWs is strongly affected by the surface diffusion adatoms while contributions from the direct impingement of vapor species onto the In droplets can be negligible. The results indicate that the droplet acts as an adatom collector rather than a catalyst. Moreover, the diffusion flow rate of adatoms increases with time at the beginning of growth and stabilizes as the growth proceeds.
|
|
Received: 23 August 2012
Published: 04 March 2013
|
|
PACS: |
61.46.Hk
|
(Nanocrystals)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
|
|
|
[1] Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner L F, Forchel A, Scheffler M, Riess W, Ohlsson B J, Gosele U and Samuelson L 2006 Mater. Today 9 28 [2] Fan H J, Werner P and Zacharias M 2006 Small 2 700 [3] Wang J, Gudiksen M S, Duan X, Cui Y and Liber C M 2001 Science 293 1455 [4] Czaban J A, Thompson D A and Lapierre P R 2009 Nano Lett. 9 148 [5] Hua B, Motohisa Kobayashi J Y, Hara S and Fukui T 2009 Nano Lett. 9 112 [6] Mattila M, Hakkarainen T, Mulot M and Lipsanen H 2006 Nanotechnology 17 1580 [7] Boles S T, Thompson C V and Fitzgerald E A 2009 J. Cryst. Growth 311 1446 [8] Dalacu D, Kam A, Austing D G, Wu X H, Lapointe J, Aers G C and Poole P J 2009 Nanotechnology 20 395602 [9] Woo R L, Gao L, Goel N, Hudait M K, Wang K L, Kodambaka S and Hicks R F 2009 Nano Lett. 9 2207 [10] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89 [11] Givargizov E I 1975 J. Cryst. Growth 31 20 [12] Dubrovskii V G and Sibirev N V 2004 Phys. Rev. E 70 031604 [13] Kashchiev D 2006 Cryst. Growth Des. 6 1154 [14] Avramov I 2007 Nanoscale Res. Lett. 2 235 [15] Dubrovskii V G, Cirlin G E, Soshnikov I P, Tonkikh A A, Sibirev N V, Samsonenko Y B and Ustinov V M 2005 Phys. Rev. B 71 205325 [16] Seifert W et al 2004 J. Cryst. Growth 272 211 [17] Moewe M, Chuang L C, Dubrovskii V G and Hasnain C C 2008 J. Appl. Phys. 104 044313 [18] Harmand J C, Patriarche G, Laperne N P, Combes M N M, Travers L and Glas F 2005 Appl. Phys. Lett. 87 203101 [19] Plante M C and LaPierre R R 2008 J. Cryst. Growth 310 356 [20] Nebolsin V A and Shchetinin A A 2003 Inorg. Mater. 39 899 [21] Dubrovskii V G, Cirlin G E, Sibirev N V, Jabeen F, Harmand J C and Werner P 2011 Nano Lett. 11 1247 [22] Krogstrup P, Curiotto S, Johnson E, Aagesen M, Nygard J and Chatain D 2011 Phys. Rev. Lett. 106 125505 [23] Novotny C J and Yu P K L 2005 Appl. Phys. Lett. 87 203111 [24] Dubrovskii V G, Sibirev N V, Suris R A, Cirlin G E, Ustinov V M, Tchernysheva M and Harmand J C 2006 Semiconductors 40 1075 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|