Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 124207    DOI: 10.1088/0256-307X/29/12/124207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Dimensional Hermite–Bessel–Gaussian Soliton Clusters in Strongly Nonlocal Media
JIN Hai-Qin1,2, LIANG Jian-Chu3, CAI Ze-Bin4, LIU Fei5, YI Lin1**
1School of Physics, Huazhong University of Science and Technology, Wuhan 430074
2School of Physics and Electronic Information, Hubei University of Education, Wuhan 430205
3Department of Electronic Science, Huizhou University, Guangdong 516001
4Scientific Research Department, Air Force Early Warning Academy, Wuhan 430019
5Department of Physics, Hubei Normal University, Huangshi 430205
Cite this article:   
JIN Hai-Qin, LIANG Jian-Chu, CAI Ze-Bin et al  2012 Chin. Phys. Lett. 29 124207
Download: PDF(1490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analytically and numerically demonstrate the existence of Hermite–Bessel–Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity.
Received: 26 June 2012      Published: 04 March 2013
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.79.Hp (Optical processors, correlators, and modulators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/124207       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/124207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Hai-Qin
LIANG Jian-Chu
CAI Ze-Bin
LIU Fei
YI Lin
[1] Chen S H and Liu H P et al 2006 Phys. Lett. A 353 493
[2] Parola A, Salasnich L and Reatto L 1998 Phys. Rev. A 57 R3180
[3] Bang O, Krolikowski W, Wyller et al 2002 Phys. Rev. E 66 046619
[4] Zhong W P and Yi L 2007 Phys. Rev. A 75 061801
[5] Buccoliero D, Desyatnikov A S, Krolikowski W et al 2007 Phys. Rev. Lett. 98 053901
[6] Mitchell D J and Snyder A W 1999 J. Opt. Soc. Am. B 16 236
[7] Zhang T, Guo Q, Xuan L et al 2006 Appl. Phys. Lett. 89 071111
[8] Peccianti M, Dyadyusha A, Kaczmarek M et al 2006 Nat. Phys. 2 737
[9] Guo Q L, Li P L, L I Y et al 2010 Chin. Phys. Lett. 27 084204
[10] Rotschild C, Alfassi B, Cohen O et al 2006 Nat. Phys. 2 769
[11] Zhong W P, Yi L, Xie R H et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025402
[12] Zhong W P, Belic M R, Assanto M et al 2011 Phys. Rev. A 83 043833
[13] Feng Y P, Ren H D and Zhou J 2010 Acta Phys. Sin. 59 3992
[14] Wouters M and Carusotto I 2007 Phys. Rev. Lett. 99 140402
[15] Zhang S W and Yi L 2010 Chin. J. Phys. 48 408
[16] Zhang S W and Yi L 2009 Opt. Commun. 282 1654
[17] Xu S L, Liang J C and Li Z M 2011 Chin. Phys. B 20 114214
[18] Hu W, Yang Z J, Lu D Q et al 2011 Acta Phys. Sin. 60 024214 (in Chinese)
[19] Rotschild C, Manela O et al 2005 Phys. Rev. Lett. 95 213904
[20] Liang J C, Cai Z B et al 2010 Opt. Commun. 283 386
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 124207
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 124207
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 124207
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 124207
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 124207
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 124207
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 124207
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 124207
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 124207
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 124207
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 124207
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 124207
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 124207
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 124207
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 124207
Viewed
Full text


Abstract