Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 122101    DOI: 10.1088/0256-307X/29/12/122101
NUCLEAR PHYSICS |
Photon Linear Polarization Coefficient of the Radiative Capture Process 2H(p,γ)3He at Thermal Energies
H. Sadeghi**
Department of Physics, Faculty of Science, Arak University, Arak 8349-8-38156, Iran
Cite this article:   
H. Sadeghi 2012 Chin. Phys. Lett. 29 122101
Download: PDF(572KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The photon polarization parameter of the proton-deuteron radiative capture process at thermal proton energies is calculated up to leading order (LO), using pionless effective field theory (EFT). In order to make a comparative study of this model, we compare our results for the photon polarization parameter with the realistic Argonne (AV14) and Argonne v18(AV18) modern nucleon-nucleon potentials and Urbana IX or Tucson-Melbourne three-nucleon interactions. The theoretical description of the 2H(p,γ)3He reaction at thermal energies is complicated by the presence of the Coulomb interaction. Only the s-wave capture contribution to the thermal energy of this reaction is calculated. Three-body currents give small but significant contributions to some of the observables in the proton-deuteron radiative capture cross section at thermal neutron energies. Our result is in good agreement with the available experimental data and potential models' calculation at this order.
Received: 21 August 2012      Published: 04 March 2013
PACS:  21.45.+v  
  25.10.+s (Nuclear reactions involving few-nucleon systems)  
  25.20.-x (Photonuclear reactions)  
  27.10.+h (A ≤ 5)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/122101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/122101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. Sadeghi
[1] Konijnenberg M W et al 1988 Phys. Lett. B 205 215
[2] Viviani M, Schiavilla R and Kievsky A 1996 Phys. Rev. C 54 534
[3] Marcucci L E, Viviani M, Schiavilla R, Kievsky A and Rosati S 2005 Phys. Rev. C 72 014001
[4] Schadow W, Nohadani O and Sandhas W 2001 Phys. Rev. C 63 044006
[5] Deltuva A, Yuan L P, Adam J, Fonseca A C and Sauer P U 2004 Phys. Rev. C 69 034004
[6] Schmid G J et al 1995 Phys. Rev. C 52 R1732
[7] Schmid G J et al 1996 Phys. Rev. Lett. 76 3088
[8] Sadeghi H, Bayegan S and Griesshammer H W 2006 Phys. Lett. B 643 263
[9] Sadeghi H 2007 Phys. Rev. C 75 044002
[10] Song Y H, Lazauskas R and Park T S 2009 Phys. Rev. C 79 064002
[11] Jurney E T and Motz H T 1963 Argonne National Laboratory Report ANL-6797
[12] Merritt J S, Taylor J G V and Boyd A W 1968 Nucl. Sci. Eng. 34 195
[13] Jurney E T, Bendt P J and Browne J C 1982 Phys. Rev. C 25 2810
[14] Bedaque P F, Rupak G, Griesshammer H W and Hammer H W 2003 Nucl. Phys. A 714 589
[15] Griesshammer H W 2004 Nucl. Phys. A 744 192
[16] Konig S and Hammer H W 2011 Phys. Rev. C 83 064001
[17] Ando S and Birse M C 2010 J. Phys. G: Nucl. Part. Phys. 37 105108
Related articles from Frontiers Journals
[1] LI Yi-He, WU Shi-Shu. Nuclear -K Bound States in 4He and 3He[J]. Chin. Phys. Lett., 2009, 26(4): 122101
[2] ZHANG Hai-Xia, ZHANG Min, ZHANG Zong-Ye. QqQq' States in Chiral SU(3) Quark Model[J]. Chin. Phys. Lett., 2007, 24(9): 122101
[3] BAO Cheng-Guang. Background of Existence of the Two Low-Lying Adjacent 4+ Narrow Resonances in 16O Nucleus and Other 4-Boson Systems[J]. Chin. Phys. Lett., 2001, 18(5): 122101
[4] BAO Cheng-Guang. Analysis of the Low-Lying Spectra of Five-Nucleon Systems[J]. Chin. Phys. Lett., 2000, 17(7): 122101
[5] BAO Cheng-Guang. A Qualitative Analysis of Channel Wave Functions and Widths of the Low-lying States of 6Li[J]. Chin. Phys. Lett., 2000, 17(1): 122101
[6] BAO Cheng-guang. Inherent Nodal Structures of the Wavefunctions of a 4-Boson System[J]. Chin. Phys. Lett., 1997, 14(1): 122101
Viewed
Full text


Abstract