CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A Hybrid Density Functional Theory Study of Band Gap Tuning in ZnO through Pressure |
ZHAO Bo-Tao1, DUAN Yi-Feng1**, SHI Hong-Liang2, QIN Li-Xia1, SHI Li-Wei1, TANG Gang1 |
1Department of Physics, China University of Mining and Technology, Xuzhou 221116 2Beijing Computational Science Research Center, Beijing 100084
|
|
Cite this article: |
ZHAO Bo-Tao, DUAN Yi-Feng, SHI Hong-Liang et al 2012 Chin. Phys. Lett. 29 117104 |
|
|
Abstract The structural transformation and electronic structure of ZnO under hydrostatic pressure are investigated using the HSE06 range-separated hybrid functional. We show that wurtzite ZnO under pressure undergoes a structural transition to a graphite-like phase. We also find that the band gap of wurtzite phase is always direct, whereas the new phase can display either direct or indirect band structure. Furthermore, the gap is greatly enhanced by pressure and no semi-metallic phase is observed. This is drastically different from our previous results of AlN and GaN [Appl. Phys. Lett. 100 (2012) 022104].
|
|
Received: 16 August 2012
Published: 28 November 2012
|
|
PACS: |
71.22.+i
|
(Electronic structure of liquid metals and semiconductors and their Alloys)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
|
|
|
[1] Vogel D, Krüger P and Pollmann J 1995 Phys. Rev. B 52 R14316 [2] Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C 1999 Phys. Rev. B 60 2340 [3] Klingshirn C and Haug H 1981 Phys. Rep. 70 315 [4] Honerlage B, Levy R, Grun J, Klingshirn C and Bohnert K 1985 Phys. Rep. 124 161 [5] Wróbel J, Kurzyd?owski K J, Hummer K, Kresse G and Piechota J 2009 Phys. Rev. B 80 155124 [6] Zhang X Y, Chen Z W, Qi Y P, Feng Y, Zhao L, Ma M Z, Liu R P and Wang W K 2007 Chin. Phys. Lett. 24 1032 [7] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2008 Chin. Phys. Lett. 25 3735 [8] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2009 Chin. Phys. Lett. 26 016105 [9] Zhang F C, Z Hang W H, Dong J T and Zhang Z Y 2011 Chin. Phys. Lett. 28 126102 [10] Duan Y, Shi H and Qin L 2008 Phys. Lett. A 372 2930 [11] Holzapfel W B 1996 Rep. Prog. Phys. 59 29 [12] Osbourn G C 1982 J. Appl. Phys. 53 1586 [13] Duan Y, Qin L, Tang G and Shi L 2008 Eur. Phys. J. B 66 201 [14] Xiang H J, Wei S, Da Silva J F and Li J 2008 Phys. Rev. B 78 193301 [15] Alahmed Z and Fu H 2008 Phys. Rev. B 77 045213 [16] Yadav S K, Sadowski T and Ramprasad R 2010 Phys. Rev. B 81 144120 [17] Dong L, Yadav S K, Ramprasad R and Alpay S P 2010 Appl. Phys. Lett. 96 202106 [18] Duan Y, Li J, Li S S and Xia J B 2008 J. Appl. Phys. 103 023705 [19] Duan Y, Qin L, Shi L, Tang G and Shi H 2012 Appl. Phys. Lett. 100 022104 [20] Duan Y, Qin L, Shi L, Tang G and Shi H 2011 J. Appl. Phys. 110 103712 [21] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [22] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 [23] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116 [24] Oba F, Togo A, Tanaka I, Paier J and Kresse G 2008 Phys. Rev. B 77 245202 [25] ágoston P, Albe K, Nieminen R M and Puska M J 2009 Phys. Rev. Lett. 103 245501 [26] Bl?chl P E 1994 Phys. Rev. B 50 17953 [27] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|