Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 112101    DOI: 10.1088/0256-307X/29/11/112101
NUCLEAR PHYSICS |
Fully Self-Consistency in Relativistic Random Phase Approximation
YANG Ding1,4, CAO Li-Gang2,3, MA Zhong-Yu3,4**
1School of Science, Communication University of China, Beijing 100024
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
3Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000
4China Institute of Atomic Energy, P. O. Box 275(18), Beijing 102413
Cite this article:   
YANG Ding, CAO Li-Gang, MA Zhong-Yu 2012 Chin. Phys. Lett. 29 112101
Download: PDF(480KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fully self-consistent relativistic random phase approximation (RRPA) is built on the relativistic mean field ground state with a non-linear relativistic Lagrangian. The consistency requires that the same effective interaction is adopted to simultaneously describe both the ground states and the excited states of the nucleus. Reliable and accurate numerical results of the nuclear giant resonances obtained in the RRPA require fully consistent calculations. In some excitation modes they are extremely sensitive to consistent treatment, e.g., such as isoscalar giant monopole and dipole resonances (ISGMR and ISGDR). In this work we perform the numerical calculations in the case of ISGDR for 208Pb and check the consistency. The spurious state in the ISGDR vanishes once the full self-consistency is achieved.
Received: 05 April 2012      Published: 28 November 2012
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  21.65.Ef (Symmetry energy)  
  24.30.Cz (Giant resonances)  
  24.30.Gd (Other resonances)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/112101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/112101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Ding
CAO Li-Gang
MA Zhong-Yu
[1] Harakeh M N and Van Der Woude A M 2001 Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitations (Oxford: Oxford University Press)
[2] Rowe D J 1970 Nuclear Collective Motion: Models and Theory (London: Methuen)
[3] Sil T et al 2006 Phys. Rev. C 73 034316
[4] Colò G, Cao L G, Giai N V and Capelli L 2012 Comput. Phys. Commun. 184 142
[5] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer-Verlag)
[6] Ma Z Y 1999 Commun. Theor. Phys. 32 493
Ma Z Y et al 2001 Nucl. Phys. A 686 173
Ma Z Y etal 2002 Nucl. Phys. A 703 222
Yang D et al 2010 Phys. Rev. C 82 054305
[7] Ring P et al 2001 Nucl. Phys. A 694 249
[8] Vretenar D et al 2000 Phys. Lett. B 487 334
[9] Piekarewicz J 2001 Phys. Rev. C 64 024307
[10] Yang D et al 2010 Commun. Theor. Phys. 53 716
Yang D et al 2010 Commun. Theor. Phys. 53 723
[11] Lalazissis G A, K?nig J and Ring P 1997 Phys. Rev. C 55 540
[12] Ma Z Y et al 1997 Phys. Rev. C 55 2385
Ma Z Y et al 1997 Nucl. Phys. A 627 1
[13] Giai N V and Sagawa H 1981 Nucl. Phys. A 371 1
Related articles from Frontiers Journals
[1] Jiawei Chen, Junchen Pei, Yu Qiang, and Jihuai Chi. Fission Properties of Neutron-Rich Nuclei around the End Point of $r$-Process[J]. Chin. Phys. Lett., 2023, 40(1): 112101
[2] Jun Xu. Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach[J]. Chin. Phys. Lett., 2021, 38(4): 112101
[3] Chen Liu , Shouyu Wang, Bin Qi , and Hui Jia . Possible Candidates for Chirality in the Odd-Odd As Isotopes[J]. Chin. Phys. Lett., 2020, 37(11): 112101
[4] Yan-Zhao Wang, Yang Li, Chong Qi, Jian-Zhong Gu. Pairing Effects on Bubble Nuclei[J]. Chin. Phys. Lett., 2019, 36(3): 112101
[5] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Jiang Liu, Li-Gang Cao. Giant Monopole Resonance and Nuclear Incompressibility of Hypernuclei[J]. Chin. Phys. Lett., 2018, 35(6): 112101
[6] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Li-Gang Cao. Pygmy and Giant Dipole Resonances in Proton-Rich Nuclei $^{17,18}$Ne[J]. Chin. Phys. Lett., 2017, 34(8): 112101
[7] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 112101
[8] Jing Peng, Wen-Qiang Xu. Tilted Axis Rotation of $^{57}$Mn in Covariant Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(01): 112101
[9] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 112101
[10] WANG Yan-Zhao, GU Jian-Zhong, YU Guo-Liang, HOU Zhao-Yu. Tensor Force Effect on Shape Coexistence of N=28 Neutron-Rich Isotones[J]. Chin. Phys. Lett., 2014, 31(10): 112101
[11] S. Unlu. Quasi Random Phase Approximation Predictions on Two-Neutrino Double Beta Decay Half-Lives to the First 2+ State[J]. Chin. Phys. Lett., 2014, 31(04): 112101
[12] WEN Pei-Wei, CAO Li-Gang . Spin-Flip Response Function of Finite Nuclei in a Fully Self-Consistent RPA Approach[J]. Chin. Phys. Lett., 2013, 30(5): 112101
[13] YANG Ding, CAO Li-Gang, MA Zhong-Yu. The Nuclear Incompressibility and Isoscalar Giant Dipole Resonance in Relativistic Continuum Random Phase Approximation[J]. Chin. Phys. Lett., 2013, 30(5): 112101
[14] TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia, ZHOU Tao. Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional[J]. Chin. Phys. Lett., 2013, 30(1): 112101
[15] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 112101
Viewed
Full text


Abstract