Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114212    DOI: 10.1088/0256-307X/29/11/114212
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Beam Manipulation by Metallic Nanoslit Arrays with Perpendicular Cuts inside Slits
HAO Zhi-Qiang1,2, LI Yu-Dong1, CHEN Jing1, CHEN Zong-Qiang1, XU Jing-Jun1, SUN Qian1**
1MOE Key Laboratory of Weak Light Nonlinear Photonics, Tianjin Key Laboratory of Photonics and Technology of Information Science, School of Physics, Nankai University, Tianjin 300071
2Department of Physics, School of Science, Tianjin University of Commerce, Tianjin 300134
Cite this article:   
HAO Zhi-Qiang, LI Yu-Dong, CHEN Jing et al  2012 Chin. Phys. Lett. 29 114212
Download: PDF(877KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Beam manipulation by metallic nanoslit arrays with perpendicular cuts inside the slits was investigated numerically. The simulated results performed by the finite element method (FEM) show that perpendicular cuts with different heights can modulate phase retardation of the transmitted light through the slits. With the proper distribution of cut height, a focused beam is achieved in our metallic nanostructure with four-time amplitude at the focus point and half focal length compared to a slit array without cuts inside. By using asymmetric distribution of height amplitude, a beam deflection around 6° can also be realized in our design.
Received: 19 July 2012      Published: 28 November 2012
PACS:  42.79.Bh (Lenses, prisms and mirrors)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114212       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114212
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAO Zhi-Qiang
LI Yu-Dong
CHEN Jing
CHEN Zong-Qiang
XU Jing-Jun
SUN Qian
[1] Ebbesen T W et al 1998 Nature 391 667
[2] Lezec H J et al 2002 Science 297 820
[3] Lee B, Kim S and Kim H 2010 Prog. Quant. Electron. 34 47
[4] Sun Z J and Kim H K 2004 Appl. Phys. Lett. 85 642
[5] Jiao X J et al 2006 Chin. Phys. Lett. 23 1884
[6] Shi H F et al 2005 Opt. Express 13 6815
[7] Zhao Y H et al 2010 Opt. Express 18 23458
[8] Goh X M et al 2010 Opt. Express 18 11683
[9] Chen Q 2011 Plasmonics 6 381
[10] Lockyear M J, Hibbins A P and Sambles J R 2007 Appl. Phys. Lett. 91 251106
[11] Wang Y H et al 2009 Opt. Express 17 5014
[12] Sun Z J and Zuo X L 2009 Opt. Lett. 34 1411
[13] Zhai X et al 2010 Opt. Express 18 6871
[14] Hao Z Q et al 2012 J. Optoelectron. Laser 23 1211 (in Chinese)
[15] Tao T J et al 2009 Opt. Express 17 13989
[16] Liu J L et al 2009 Opt. Express 17 20134
Related articles from Frontiers Journals
[1] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 114212
[2] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 114212
[3] YUAN Na, ZHANG Wei, WANG Juan, CHEN Wei, PENG Run-Wu. Intensity Distributions of a Supercontinuum Laser in an Apertured Dispersion Lens[J]. Chin. Phys. Lett., 2015, 32(03): 114212
[4] ZHANG Kang-Kang, LUO Hai-Lu, WEN Shuang-Chun. Focal Shift of Paraxial Gaussian Beams in a Left-Handed Material Slab Lens[J]. Chin. Phys. Lett., 2010, 27(7): 114212
[5] LI Zheng-Yong, WU Chong-Qing, YANG Shuang-Shou, TIAN Chang-Yong, ZHAOShuang, WANG Yong-Jun. Generalized Principal-State-of-Polarization Analysis and Matrix Model for Piezoelectric Polarization Controllers[J]. Chin. Phys. Lett., 2008, 25(4): 114212
[6] SHI Li-Fang, DONG Xiao-Chun, DENG Qi-Ling, LUO Xian-Gang, DU Chun-Lei. Formation for Bass-Relief Microprofiles Based on an Analytic Formulation[J]. Chin. Phys. Lett., 2007, 24(10): 114212
[7] ZHANG Hong-Mei, YOU Han, SHI Jia-Wei, GUO Shu-Xu, WANG Wei, LIU Ming-Da, MA Dong-Ge. High Efficiency Red Organic Light-Emitting Diodes Based on Microcavity Structure[J]. Chin. Phys. Lett., 2006, 23(5): 114212
[8] LIAO Chun-Yan, WU Zu-Bin, FAN Zheng-Xiu, SHAO Jian-Da, WANG Zhuan, ZHANG Zhi-Gang. Negative Dispersion Mirrors in Ta2O5SiO2 for Femtosecond Ti:Sapphire Lasers by Using Gires--Tournois Interferometers[J]. Chin. Phys. Lett., 2005, 22(6): 114212
[9] QIAN Yong, ZHANG Yu, WEI Rong, WANG Yu-Zhu. Generation of a Collimated Doughnut-Beam for Atom Trapping Using a Single-Cone Axicon[J]. Chin. Phys. Lett., 2004, 21(6): 114212
[10] FENG Shi-Meng, ZHU Guo-Long, SHAO Jian-Da, YI Kui, FAN Zheng-Xiu . Reflectivity of W/Si Multilayer at the Photoenergy of 700eV and 1200eV[J]. Chin. Phys. Lett., 2001, 18(11): 114212
Viewed
Full text


Abstract