CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy |
ZHAO Zhi-Fei, LI Xin-Hua**, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi |
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
|
|
Cite this article: |
ZHAO Zhi-Fei, LI Xin-Hua, WEN Long et al 2012 Chin. Phys. Lett. 29 118103 |
|
|
Abstract GaAs nanowires (NWs) are grown on GaAs (311)B substrates by gold assisted molecular beam epitaxy technology. Combined scanning and transmission electron microscopy analyses, the crystallographic orientations of NWs are studied. It is found that crystallographic orientations of NWs are closely related to their crystal structures: NWs of zinc blende structure grow along ?001? directions and NWs of wurtzite structure grow along ?0001? directions. The influence of impinging Ga flux on morphology and crystal structure of the NWs is also discussed. It is observed that NWs prefer to grow along zinc blende ?001? directions at lower Ga flux, while NWs tend to grow along the wurtzite ?0001? directions with only a small portion along the zinc blende ?001? direction at a higher Ga flux. The control of crystal structure and orientation of NWs can be achieved effectively by changing the Ga flux.
|
|
Received: 20 March 2012
Published: 28 November 2012
|
|
PACS: |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
81.07.Gf
|
(Nanowires)
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
|
|
|
[1] Appenzeller J, Knoch J, Bjork M T, Riel H, Schmid H and Riess W 2008 IEEE Trans. Electron Devices 55 2827 [2] Zhu Y G, Dou X C, Huang X H, Li L and Li G H 2006 J. Phys. Chem. B 110 26189 [3] Li S S, Huang J Z and Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese) [4] M C Plante and R R LaPierre 2008 J. Cryst. Growth 310 356 [5] Liu L, Wen Y H and Tian H C 2010 Acta Phys. Sin. 59 1952 (in Chinese) [6] J C Harmand, G Patriarche, N Péré-Laperne, M N Mérat-Combes, L Travers and F Glas 2005 Appl. Phys. Lett. 87 203101 [7] Ghosh S C, Kruse P and LaPierre R R 2009 Nanotechnology 20 115602 [8] Shtrikman H, Popovitz-Biro R, Kretinin A and Heiblum M 2009 Nano Lett. 9 215 [9] Wen L, Zhao Z F, Li X H, Shen Y F, Guo H M et al 2011 Appl. Phys. Lett. 99 143116 [10] Soci C, Bao X, Aplin David P R and Wang D 2008 Nano Lett. 8 4275 [11] Ikejiri K, Sato T, Yoshida H, Hiruma K Motohisa J Hara S and Fukui T 2008 Nanotechnology 19 265604 [12] Persson A I, Ohlsson B J, Jeppesen S and Samuelson L 2004 J. Cryst. Growth 272 167 [13] Wu Z H, Mei X, D Kim, M Blumin, H E Ruda 2003 Appl. Phys. Lett. 83 3368 [14] Tchernycheva M, Harmand J C, Patriarche G, Travers L and Cirlin G E 2006 Nanotechnology 17 4025 [15] Plante M C and LaPierre R R 2006 J. Cryst. Growth 286 394 [16] Plante M C and LaPierre R R 2008 Nanotechnology 19 495603 [17] Li X H, Guo H M, Yin Z J, Shi T F, Wen L, Zhao Z F et al 2011 J. Cryst. Growth 324 82 [18] Czaban J A, Thompson D A and LaPierre R R 2009 Nano Lett. 9 148 [19] Colombo C, Hei? M, Gr?tzel M and Morral A F I 2009 Appl. Phys. Lett. 94 173108 [20] Kayes B M, Atwater H A and Lewis N S 2005 J. Appl. Phys. 97 114302 [21] McMahon M I and Nelmes R J 2005 Phys. Rev. Lett. 95 215505 [22] Ma X L, Zhu Y L and Zhang Z 2002 Philos. Mag. Lett. 82 461 [23] Glas F, Harmand J C and Patriarche G 2007 Phys. Rev. Lett. 99 146101 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|