Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104301    DOI: 10.1088/0256-307X/29/10/104301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Sound Velocity in Soap Foams
WU Gong-Tao, LÜ Yong-Jun, LIU Peng-Fei, LI Yi-Ning, SHI Qing-Fan**
School of Physics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
WU Gong-Tao, Lü Yong-Jun, LIU Peng-Fei et al  2012 Chin. Phys. Lett. 29 104301
Download: PDF(493KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration.
Received: 08 June 2012      Published: 01 October 2012
PACS:  43.35.Ae (Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in gases)  
  43.20.+g (General linear acoustics)  
  82.70.Rr (Aerosols and foams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Gong-Tao
Lü Yong-Jun
LIU Peng-Fei
LI Yi-Ning
SHI Qing-Fan
[1] Sun Q C and Huang J 2006 Wuli 35 1050 (in Chinese)
[2] Sun Q C, Ge W and Huang J 2008 Chin. Sci. Bull. 53 3138
[3] Banhart J 2001 Prog. Mater. Sci. 46 559
[4] Durian D J 1995 Phys. Rev. Lett. 75 4780
[5] Crespo A 1969 Phys. Fluids 12 2274
[6] Caflisch R E, Miksis M J, Papanicolaou G C and Ting L 1985 J. Fluid Mech. 153 259
[7] Carstensen E L and Foldy L L 1947 J. Acoust. Soc. Am. 19 481
[8] Fox F E, Curley S R and Larson G S 1955 J. Acoust. Soc. Am. 27 534
[9] Wang W H 2011 J. Appl. Phys. 110 053521
[10] Wang W H 2003 Prog. Mater. Sci. 57 487
[11] Devin C 1959 J. Acoust. Soc. Am. 31 1654
[12] Prosperetti A 1991 J. Fluid Mech. 222 587
[13] Rubinstein J 1985 J. Acoust. Soc. Am. 77 2061
[14] Mujica N and Fauve S 2002 Phys. Rev. E 66 021404
[15] Orenbakh Z M and Shushkov G A 1993 Acoust. Phys. 39 63
[16] Vafina F I, Gol'dfarb I I and Shreiber I R 1992 Sov. Phys. Acoust. 38 139
[17] Gol'dfarb I I, Shreiber I R and Vafina F I 1992 J. Acoust. Soc. Am. 92 2756
[18] Kann K B 2005 Coll. Surf. A 263 315
[19] Kann K B and Kislitsyn A A 2003 Coll. J. 65 31
[20] Nakoryakov V E Pokusaev B G and Shreiber I R 1990 Wave Dynamics of Gas- and Vapor-Liquid Media (Moscow: Energoatomizdat)
Related articles from Frontiers Journals
[1] WANG Zhi-Gang, LIU Yong-Gang, ZHOU Wen-Ge, SONG Wei, BI Yan, LIU Lei, XIE Hong-Sen . Sound Velocity in Water and Ice up to 4.2 GPa and 500 K on Multi-Anvil Apparatus[J]. Chin. Phys. Lett., 2013, 30(5): 104301
[2] LI Shu-Guang**, ZHOU Hong-Song, YIN Guo-Bing . Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2011, 28(11): 104301
[3] ZHOU Hong-Song, LI Shu-Guang, FU Bo, YAO Yan-Yan, ZHANG Lei. A Kind of Double-Cladding Photonic Crystal Fiber with High Birefringence and Two Zero-Dispersion Wavelengths[J]. Chin. Phys. Lett., 2010, 27(1): 104301
[4] LI Shao-Chun, WANG Ru-Ju, LI Feng-Ying, LIU Zhen-Xing, ZHU Jia-Lin, YU Ri-Cheng, JIN Chang-Qing. Ultrasonic Properties of the MgB2 Superconductor[J]. Chin. Phys. Lett., 2001, 18(10): 104301
Viewed
Full text


Abstract