FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Widely Wavelength-Tunable Blue-Shifted Dispersive Waves for Broadband Visible Wavelength Generation in a Photonic Crystal Fiber Cladding |
YUAN Jin-Hui1**, SANG Xin-Zhu1, YU Chong-Xiu1, SHEN Xiang-Wei1, WANG Kui-Ru1, YAN Bin-Bin1, HAN Ying2, ZHOU Gui-Yao2,3, HOU Lan-Tian2 |
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 2Institute of Infrared Optical Fibers and Sensors, Physics Department, Yanshan University, Qinhuangdao 066004 3School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006
|
|
Cite this article: |
YUAN Jin-Hui, SANG Xin-Zhu, YU Chong-Xiu et al 2012 Chin. Phys. Lett. 29 104207 |
|
|
Abstract Blue-shifted dispersive waves (DWs) are efficiently generated from the red-shifted solitons by coupling the 120 fs pulses into the fundamental mode of the multi-knots of a photonic crystal fiber cladding. When the femtosecond pulses at the wavelength of 825 nm and the average power of 300 mW are coupled into knots 1–3, the conversion efficiency ηDW of 32% and bandwidth BDW of 50 nm are obtained. The ultrashort pulses generated by the DWs can be tunable over the whole visible wavelength by adjusting the wavelengths of the pump pulses coupled into different knots. It can be believed that this widely wavelength-tunable ultrashort visible pulse source has important applications in ultrafast photonics and resonant Raman scattering.
|
|
Received: 05 June 2012
Published: 01 October 2012
|
|
PACS: |
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.81.Cn
|
(Fiber testing and measurement of fiber parameters)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
|
|
|
[1] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135 [2] Kibler B, Dudley J M and Coen S 2005 Appl. Phys. B 81 337 [3] Russell P St J 2006 J. Lightwave Technol. 24 4729 [4] Yuan J H, Sang X Z, Yu C X, Xin X J, Shen X W, Zhang J L, Zhou G Y, Li S G and Hou L T 2011 Chin. Phys. B 20 054210 [5] Shen X W, Yuan J H, Sang X Z, Yu C X, Rao L, Xin X J, Xia M, Han Y, Xia C M and Hou L T 2012 Chin. Phys. B 21 074209 [6] Han Y, Hou L T, Yuan J H, Xia C M and Zhou G Y 2012 Chin. Phys. Lett. 29 014201 [7] Zysset B, Beaud P and Hodel W 1987 Appl. Phys. Lett. 50 1027 [8] Nishizawa N and Goto T 1999 IEEE Photon. Technol. Lett. 1 1 325 [9] Nishizawa N, Ito Y and Goto T 2002 IEEE Photon. Technol. Lett. 14 986 [10] Serebryannikov E E, Zheltikov A M, Ishii N, Teisset C Y, K?hler S, Fuji T, Metzger T, Krausz F and Baltu?ka A 2005 Appl. Phys. B 81 585 [11] Abedin K S, Gopinath J T, Ippen E P, Kerbage C E, Windeler R S and Eggleton B J 2002 Appl. Phys. Lett. 81 1384 [12] Husakou A V and Herrmann J 2003 Appl. Phys. Lett. 83 3867 [13] Wang W, Gao F, Hou L T and Zhou G Y 2008 Chin. Phys. Lett. 25 2055 [14] Yuan J H, Sang X Z, Yu C X, Li S G, Zhou G Y and Hou L T 2010 IEEE J. Quantum Electron. 46 728 [15] Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G and Hou L T 2011 Appl. Phys. B 104 117 [16] Tartara L, Cristiani I and Degiorgio V 2003 Appl. Phys. B 77 307 [17] Cristiani I, Tediosi R, Tartara L and Degiorgio V 2004 Opt. Express 12 124 [18] Tu H H and Boppart S A 2009 Opt. Express 17 9858 [19] Chang G Q, Chen L J and K ?rtner F X 2010 Opt. Lett. 35 2361 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|