Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 070304    DOI: 10.1088/0256-307X/29/7/070304
GENERAL |
Quasi-exactly Solvable Cases of the N-Dimensional Symmetric Quartic Anharmonic Oscillator
PAN Feng1,2, XIE Ming-Xia1, SHI Chang-Liang1, J. P. DRAAYER2
1Department of Physics, Liaoning Normal University, Dalian 116029
2Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA
Cite this article:   
PAN Feng, XIE Ming-Xia, SHI Chang-Liang et al  2012 Chin. Phys. Lett. 29 070304
Download: PDF(485KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The O(N) invariant quartic anharmonic oscillator is shown to be exactly solvable if the interaction parameter satisfies special conditions. The problem is directly related to that of a quantum double well anharmonic oscillator in an external field. A finite dimensional matrix equation for the problem is constructed explicitly, along with analytical expressions for some excited states in the system. The corresponding Niven equations for determining the polynomial solutions for the problem are given.
Received: 11 April 2012      Published: 29 July 2012
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Mv (Approximations and expansions)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/070304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/070304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Feng
XIE Ming-Xia
SHI Chang-Liang
J. P. DRAAYER
[1] Jentschura U D, Surzhykov A and Zinn-Justin J 2009 Phys. Rev. Lett. 102 011601
[2] Bender C M and Wu T T 1969 Phys. Rev. 184 1231
[3] Simon B and Dicke A 1970 Ann. Phys. 58 76
[4] Hioe F T, MacMillan D and Montroll E W 1978 Phys. Rep. 43 305
[5] Jaenicke J and Kleinert H 1993 Phys. Lett. A 176 409
[6] Langer J S 1967 Ann. Phys. 41 108
[7] Karrlein R and Kleinert H 1994 Phys. Lett. A 187 133
[8] Turbiner A V and Ushveridze A G 1988 J. Math. Phys. 29 2053
[9] Kleinert H 1993 Phys. Lett. A 173 332
[10] Milton K A and Das R 1996 Lett. Math. Phys. 36 177
[11] Flessas G P 1979 Phys. Lett. A 72 289
[12] Flessas G P and Das K P 1980 Phys. Lett. A 78 19
[13] Znojil M 1982 Phys. Rev. D 26 3750
[14] Kaushal R S 1989 Phys. Lett. A 142 57
[15] Rose S K and Verma N 1990 Phys. Lett. A 147 85
[16] Singh C S, Singh S B and Singh K D 1990 Phys. Lett. A 148 389
[17] Tater M 1987 J. Phys. A 20 2483
[18] Turbiner A V 1988 Commun. Math. Phys. 118 467
[19] Turbiner A V 1988 Zh. Eksp. Teor. Fiz. 94 33 http://www.jetp.ac.ru/cgi-bin/e/index/r/94/2/p33?a=list
[20] Dutta A K and Willey R S 1988 J. Math. Phys. 29 892
[21] Pan F, Klauder J R and Draayer J P 1999 Phys. Lett. A 262 131
[22] Dong S H 2002 Int. J. Theor. Phys. 41 89
[23] Ushveridze A G 1994 Quasi-exactly Solvable Models in Quantum Mechanics (Bristol: IOP Publishing) http://www.taylorandfrancis.com/books/details/ 9780750302661/
[24] Flessas G P and Watt A 1981 J. Phys. A 14 L315
[25] Flessas G P, Whitehead R R and Rigas A 1983 J. Phys. A 16 85
[26] Bender C M and Boettcher S 1998 J. Phys. A 31 L273
[27] Znojil M 2000 J. Phys. A 33 4203
[28] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[29] Van der Straeten E and Naudts J 2006 J. Phys. A 39 933
[30] Barsan V 2011 Phil. Mag. 91 477
[31] Znojil M 2000 Phys. Rev. A 61 066101
[32] Szeg? G 1975 Amer. Math. Soc. Colloq. Publ. (Providence: Amer. Math. Soc.) vol 23 http://www.ams.bookstore-getitem/item=COLL-23
[33] Pan F and Draayer J P 1999 Phys. Lett. B 451 1
[34] Pan F, Bao L, Zhai L, Cui X and Draayer J P 2011 J. Phys. A 44 395305
[35] Richardson R W 1977 J. Math. Phys. 18 1802
[36] Gaudin M 1995 Travaux de Michel Gaudin: Modeles Exactement Resolus (France: Les Editions de Physique) http://www.edition-sciences.com/modeles-exactement-resolus.htm
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 070304
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 070304
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 070304
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 070304
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 070304
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 070304
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 070304
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 070304
[9] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 070304
[10] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 070304
[11] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 070304
[12] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 070304
[13] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 070304
[14] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 070304
[15] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 070304
Viewed
Full text


Abstract