CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Carrier Differences on Magnetoresistance in Organic and Inorganic Spin Valves |
YUAN Xiao-Bo**, REN Jun-Feng, HU Gui-Chao |
College of Physics and Electronics, Shandong Normal University, Jinan 250014 |
|
Cite this article: |
YUAN Xiao-Bo, REN Jun-Feng, HU Gui-Chao 2012 Chin. Phys. Lett. 29 067501 |
|
|
Abstract Magnetoresistance in the structure of ferromagnetic/nonmagnetic/ferromagnetic spin valves are studied theoretically from the spin diffusion theory and Ohm's law. The nonmagnetic layer could be an organic or inorganic semiconductor. Carrier mobility and the spin-flip time in organic semiconductors are different from those in inorganic semiconductors, and effects of these differences on the magnetoresistance in organic and inorganic spin valves are discussed. From the calculation, it is found that the magnetoresistance in inorganic spin valves is higher than that in organic spin valves. Effects of the conductivity matching and spin-dependent interfacial resistances between ferromagnetic and nonmagnetic layers, thickness of the nonmagnetic layer, and the bulk spin polarization of the ferromagnetic layer on the magnetoresistance are also discussed.
|
|
Received: 02 March 2012
Published: 31 May 2012
|
|
PACS: |
75.75.+a
|
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
|
|
|
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Moln醨 S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [2] Fert A 2008 Rev. Mod. Phys. 80 1517 [3] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [4] Wu M W, Jiang J H and Weng M Q 2010 Phys. Rep. 493 61 [5] Naber W J M, Faez S and van der Wiel W G 2007 J. Phys. D: Appl. Phys. 40 R205 [6] Sanvito S 2011 Nature Mater. 10 484 [7] Dediu V, Hueso L E, Bergenti I and Taliani C 2009 Nature Mater. 8 707 [8] Dediu V, Murgia M, Matacotta F C, Taliani C and Barbanera S 2002 Solid State Commun. 122 181 [9] Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821 [10] Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B and Moodera J S 2007 Phys. Rev. Lett. 98 016601 [11] Drew A J, Hoppler J, Schulz L, Pratt F L, Desai P, Shakya P, Kreouzis T, Gillin W P, Suter A, Morley N A, Malik V K, Dubroka A, Kim K W, Bouyanfif H, Bourqui F, Bernhard C, Scheuermann R, Nieuwenhuys G J, Prokscha T and Morenzoni E 2009 Nature Mater. 8 109 [12] Sun D, Yin L, Sun C, Guo H, Gai Z, Zhang X G, Ward T Z, Cheng Z and Shen J 2010 Phys. Rev. Lett. 104 236602 [13] Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nature Phys. 6 615 [14] Sheng Y, Nguyen T D, Veeraraghavan G, Mermer O and Wohlgenannt M 2007 Phys. Rev. B 75 035202 [15] Bergeson J D, Prigodin V N, Lincoln D M and Epstein A J 2008 Phys. Rev. Lett. 100 067201 [16] Dong X, Li X and Xie S 2011 Org. Electron. 12 1835 [17] Agrawal S, Jalil M B A, Teo K L and Liew Y F 2005 J. Appl. Phys. 97 103907 [18] Ren J F, Zhang Y B and Xie S J 2008 Org. Electron. 9 1017 [19] Zhang Y B, Ren J F, Lei J and Xie S J 2009 Org. Electron. 10 568 [20] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781 [21] Scott J C, Pfluger P, Krounbi M T and Street G B 1983 Phys. Rev. B 28 2140 [22] Genoud F, Guglielmi M, Nechtschein M, Genies E and Salmon M 1985 Phys. Rev. Lett. 55 118 [23] Ren J F, Fu J Y, Liu D S, Mei L M and Xie S J 2005 J. Appl. Phys. 98 074503 [24] Yu Z G, Berding M A and Krishnamurthy S 2005 J. Appl. Phys. 97 024510 [25] Fert A and Jaffres H 2001 Phys. Rev. B 64 184420 [26] Albrecht J D and Smith D L 2002 Phys. Rev. B 66 113303 [27] Campbell H, Kress J D, Martin R L, Smith D L, Barashkov N N and Ferraris J P 1997 Appl. Phys. Lett. 71 3528 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|