Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 048102    DOI: 10.1088/0256-307X/29/4/048102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature
FAN Xiao-Hong1,2,XU Bin2**,NIU Zhen2,ZHAI Tong-Guang3,TIAN Bin2
1School of Material Science and Engineering, Shandong University, Ji'nan 250101
2School of Materials Science and Engineering, Shandong Jianzhu University, Ji'nan 250101
3Department of Chemical and Materials Engineering, University of Kentucky, Lexington, USA
Cite this article:   
FAN Xiao-Hong, XU Bin, NIU Zhen et al  2012 Chin. Phys. Lett. 29 048102
Download: PDF(2803KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Diamond is synthesized in an Fe-Ni-C system at high pressure and high temperature, the C sp3 content profile through different thicknesses of interface between diamond and the catalyst film is measured by using electron energy loss spectroscopy. It is found that the C sp3 content varies from 87.33% to 78.15% when the measured position is located at the inner face near the diamond and then changes to 6 µm further away. Transmission electron microscope examinations show that there are different phases in the interface, such as Fe3C, γ−(Fe,Ni), and graphite, but the graphite phase diminishes gradually towards the inner face of the interface. These results profoundly indicate that the carbon atoms, required for diamond growth, could only come from the carbon-rich phase, Fe3C, but not directly from the graphite. It is possible that carbon atoms from the graphite in the interface first react with Fe atoms to produce carbide Fe3C during diamond synthesis at high pressure and high temperature. The Fe3C finally decomposes into carbon atoms with the sp3 electron state at the interface to form the diamond.
Received: 08 December 2011      Published: 04 April 2012
PACS:  81.05.ug (Diamond)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  81.16.Hc (Catalytic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/048102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/048102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Xiao-Hong
XU Bin
NIU Zhen
ZHAI Tong-Guang
TIAN Bin
[1] Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51
[2] Liu X B, Jia X P, Guo X K et al 2010 Cryst. Growth Design 10 2895
[3] Liu. X B, Ma H A, Zhao Z F et al 2011 Diamond Relat. Mater. 20 468
[4] Palafnik L S, Gladkikh L I 1979 The Properties of Diamond (New York: Academic)
[5] Sung J 2000 J. Mate. Sci. 35 6041
[6] Xu B, Li M S, Li L et al 2007 Mater. Sci. Eng. A 454 293
[7] Strong H M and Hanneman R E 1967 J. Chem. Phys. 46 3668
[8] Pate B B 1986 Surf. Sci. 165 83
[9] Giardini A A, Kohn J A, Eckart D W and Tydings J E 1961 Am. Miner. 46 976
[10] Wentorf R H 1971 J. Phys. Chem. 75 1833
[11] Yan X, Kanda H, Ohsawa T et al 1990 J. Mater. Sci. 25 1585
[12] Yin L W, Li M S, Cui J J et al 2002 J. Cryst. Growth 234 1
[13] Solozhenko V L, Turkevich V Z, Kurakevych O O et al 2002 J. Phys. Chem. B 106 6634
[14] Li Y and Hao Z Y 2005 Diam. Abrasives Eng. 5 55
[15] Egerton R F 2009 Rep. Prog. Phys. 72 2
[16] Yoshikawa M, Mori Y, Obata H et al 1995 Appl. Phys. Lett. 67 694
[17] Li L, Xu B and Li M S 2008 Chin. Sci. Bull. 53 937
[18] Caveney R J 1992 Mater. Sci. Eng. B 11 197
[19] Hao Z Y, Chen Y F and Zou G T 1996 Synthetic Diamond (Changchun: Jilin University Press) (in Chinese)
[20] Zhang K C and Zhang L H 1997 Science and Technology for Crystal Growth (Beijing: Science Press) (in Chinese)
[21] Liu Z L, Li Z L and Liu W D 2002 Interface Electronic Structure and Interfacial Properties (Beijing: Science Press) (in Chinese)
Related articles from Frontiers Journals
[1] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 048102
[2] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 048102
[3] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 048102
[4] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 048102
[5] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 048102
[6] Yan-Yan Shen, Yi-Xin Zhang, Ting Qi, Yu Qiao, Yu-Xin Jia, Hong-Jun Hei, Zhi-Yong He, Sheng-Wang Yu. Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing[J]. Chin. Phys. Lett., 2016, 33(08): 048102
[7] HU Xiao-Jun, LI Nian. Oxygen Ion Implantation Enhanced Silicon-Vacancy Photoluminescence and n-Type Conductivity of Ultrananocrystalline Diamond Films[J]. Chin. Phys. Lett., 2013, 30(8): 048102
[8] YANG Yan-Ning, ZHANG Zhi-Yong**, ZHANG Fu-Chun, DONG Jun-Tang, ZHAO Wu, ZHAI Chun-Xue, ZHANG Wei-Hu. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds[J]. Chin. Phys. Lett., 2012, 29(1): 048102
[9] ZHANG Chun-Mei, ZHENG Yan-Bin, JIANG Zhi-Gang, LV Xian-Yi, HOU Xue, HU Shuang, LIU Jun-Wei. Effect of CO2 Addition on Preparation of Diamond Films by Direct-Current Hot-Cathode Plasma Chemical Vapor Deposition Method[J]. Chin. Phys. Lett., 2010, 27(8): 048102
[10] WANG Qi-Liang, LÜ, Xian-Yi, LI Liu-An, CHENG Shao-Heng, LI Hong-Dong. Growth and Characteristics of Freestanding Hemispherical Diamond Films by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2010, 27(4): 048102
Viewed
Full text


Abstract