Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 047901    DOI: 10.1088/0256-307X/29/4/047901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Leakage Current Simulation of Insulating Thin Film Irradiated by a Nonpenetrating Electron Beam
ZHANG Hai-Bo1**,LI Wei-Qin2,CAO Meng1
1Key Laboratory for Physical Electronics and Devices of MOE, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049
2School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048
Cite this article:   
ZHANG Hai-Bo, LI Wei-Qin, CAO Meng 2012 Chin. Phys. Lett. 29 047901
Download: PDF(469KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform numerical simulations of the leakage current characteristics of an insulating thin film of SiO2 negatively charged by a low-energy nonpenetrating focused electron beam. For the formation of leakage current, electrons are demonstrated to turn from diffusion to drift after clearing the minimum potential barrier due to electron-hole separation. In the equilibrium state, the leakage current increases approximately linearly with the increasing primary beam current and energy. It also increases with the increasing film thickness and trap density, and with the decreasing electron mobility, in which the film thickness has a greater influence. Validated by some existing experiments, the simulation results provide a new perspective for the negative charging effects of insulating samples due to the low-energy focused electron beam.
Received: 18 November 2011      Published: 04 April 2012
PACS:  79.20.Ap (Theory of impact phenomena; numerical simulation)  
  73.61.Ng (Insulators)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/047901       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/047901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hai-Bo
LI Wei-Qin
CAO Meng
[1] Cazaux J, Kim K H, Jbara O and Salace G 1991 J. Appl. Phys. 70 960
[2] Mizuhara Y, Kato J, Nagatomi T, Takai Y and Inoue M 2002 J. Appl. Phys. 92 6128
[3] Li W Q and Zhang H B 2008 Acta Phys. Sin. 57 3219 (in Chinese)
[4] Cornet N, Goeuriot D, Touzin M, Guerret Piecourt C, Juve D, Treheux D and Fitting H J 2009 J. Non-Cryst. Solids 355 1111
[5] Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Patat J M and Fakhfakh Z 2010 J. Appl. Phys. 108 093705
[6] Hwu J J and Joy D C 1999 Scanning 21 264
[7] Nakasugi T, Ando A, Sugihara K, Miyoshi M and Okumura K 2001 Proc. SPIE 4343 334
[8] Bai M, Pease R F W and Meisburger D 2003 J. Vac. Sci. Technol. B 21 2638
[9] Zhang H B, Li W Q and Wu D W 2009 J. Electron Microsc. 58 15
[10] Mott N F and Gurney R W 1940 Electronic Processes in Ionic Crystals (Oxford: Clarendon)
[11] Nunes de Oliveira L and Gross B 1975 J. Appl. Phys. 46 3132
[12] Aris F C, Davies P M and Lewis T J 1976 J. Phys. C: Solid State Phys. 9 797
[13] Taylor D M 1981 IEE Proc. A 128 174
[14] Neumann F, Genenko Y A, Schmechel R and von Seggern H 2005 Synth. Met. 150 291
[15] Chandra W, Ang L K, Pey K L and Ng C M 2007 Appl. Phys. Lett. 90 153505
[16] Kurniawan O and Ong V K S 2009 IEEE Trans. Electron Devices 56 1094
[17] Li W Q and Zhang H B 2010 Micron 41 416
[18] Jiang D J and Tan Z Y 2010 Chin. Phys. Lett. 27 033401
[19] Li W Q and Zhang H B 2010 Appl. Surf. Sci. 256 3482
[20] Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)
[21] Zhang H B, Feng R J and Ura K 2003 Chin. Phys. Lett. 20 2011
[22] Zhang H B, Li W Q and Cao M 2012 J. Electron Microsc.
[23] Chen F F 1974 Introduction to Plasma Physics (New York: Plenum Press)
[24] Li W J and Bauhofer W 2011 Carbon 49 3891
Related articles from Frontiers Journals
[1] Rong-Hui Quan, Kai Zhou, Mei-Hua Fang, Wei-Ying Chi, Zhen-Long Zhang. Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method[J]. Chin. Phys. Lett., 2017, 34(6): 047901
[2] Wei Liu, Zhen-Yu Tan, C. Champion. A New Simulation of Track Structure of Low-Energy Electrons in Liquid Water: Considering the Condensed-Phase Effect on Electron Elastic Scattering[J]. Chin. Phys. Lett., 2016, 33(09): 047901
[3] JIANG Ding-Ju, TAN Zhen-Yu. A Monte Carlo Study of Low-Energy Electron Transport in Liquid Water: Influence of the Rutherford Formula and the Mott Model[J]. Chin. Phys. Lett., 2010, 27(3): 047901
[4] SHAN Li, CHENG Ming, LIU Kai-Xin, LIU Wei-Fu, CHEN Shi-Yang. New Discrete Element Models for Three-Dimensional Impact Problems[J]. Chin. Phys. Lett., 2009, 26(12): 047901
[5] HE Qing-Fang, XU Zheng, TENG Feng, LIU De-Ang, XU Xu-Rong. Improvements of the Analytical Model of Monte Carlo[J]. Chin. Phys. Lett., 2006, 23(3): 047901
[6] TAN Zhen-Yu, XIA Yue-Yuan, ZHAO Ming-Wen, LIU Xiang-Dong, HUANG Bo-Da, LI Feng, JI Yan-Ju. Monte Carlo Simulation on Energy Deposition of Low-Energy Electrons in Liquid Water[J]. Chin. Phys. Lett., 2005, 22(1): 047901
Viewed
Full text


Abstract