Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 047301    DOI: 10.1088/0256-307X/29/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field
PENG Juan**,LI Shu-Shen
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083
Cite this article:   
PENG Juan, LI Shu-Shen 2012 Chin. Phys. Lett. 29 047301
Download: PDF(2110KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the electronic spectrum of coupled quantum dots (QDs) arranged as a graphene hexagonal lattice in the presence of an external perpendicular magnetic field. In our tight-binding model, the effect of the magnetic field is included in both the Peierls phase of the Hamiltonian and the tight-binding basis Wannier function. The energy of the system is analyzed when the magnetic flux through the lattice unit cell is a rational fraction of the quantum flux. The calculated spectrum has recursive properties, similar to those of the classical Hofstadter butterfly. However, unlike the ideal Hofstadter butterfly structure, our result is asymmetric since the impacts of the specific material and the magnetic field on the wavefunctions are included, making the results more realistic.
Received: 07 November 2011      Published: 04 April 2012
PACS:  73.63.Kv (Quantum dots)  
  74.78.Na (Mesoscopic and nanoscale systems)  
  71.70.Di (Landau levels)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/047301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Juan
LI Shu-Shen
[1] Kratzer P et al 2006 Phys. Rev. B 73 205347
[2] Hanke M, Schmidbauer M, Grigoriev D, Schäfer Köhler P R, Metzger T H, Wang Zh M, Mazur Yu I and Salamo G J 2006 Appl. Phys. Lett. 89 053116
[3] Lee H, Johnson J A, He M Y, Speck J S and Petroff P M 2001 Appl. Phys. Lett. 78 105
[4] Peng J and Li S S 2010 Appl. Phys. Lett. 97 242105
[5] Peierls R 1933 Z. Phys. 80 763
[6] Hofstadter D R 1976 Phys. Rev. B 14 2239
[7] Claro F H and Wannier G H 1979 Phys. Rev. B 19 6068
[8] Rammal R 1985 J. Phys. (Paris) 46 1345
[9] Fekete P and Gumbs G 1999 J. Phys.: Condens. Matter 11 5475
[10] Nakamura M and Hirasawa L 2008 Phys. Rev. B 77 045429
[11] Wakabayashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[12] Dietl P, Piéchon F and Montambaux G 2008 Phys. Rev. Lett. 100 236405
[13] Huang Y C, Lin M F and Chang C P 2008 J. Appl. Phys. 103 073709
[14] Muñoz E, Barticevic Z and Pacheco M 2005 Phys. Rev. B 71 165301
[15] Mei X, Kim D and Ruda H E 2002 Appl. Phys. Lett. 81 361
[16] Chang M C and Niu Q 1996 Phys. Rev. B 53 7010
Related articles from Frontiers Journals
[1] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 047301
[2] Xiao Guo, Wen-jie Liang. The Unconventional Influence of a Nearby Molecule onto Transport of Single C$_{60}$ Molecule Transistor[J]. Chin. Phys. Lett., 2019, 36(12): 047301
[3] Zhanbin Bai, Xiangkai Liu, Zhen Lian, Kangkang Zhang, Guanghou Wang, Su-Fei Shi, Xiaodong Pi, Fengqi Song. A Silicon Cluster Based Single Electron Transistor with Potential Room-Temperature Switching[J]. Chin. Phys. Lett., 2018, 35(3): 047301
[4] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 047301
[5] SU Li-Na, LV Li, LI Xin-Xing, QIN Hua, GU Xiao-Feng. Fabrication and Characterization of a Single Electron Transistor Based on a Silicon-on-Insulator[J]. Chin. Phys. Lett., 2015, 32(4): 047301
[6] LI Zeng-Peng, WU Shao-Quan, ZHAO Guo-Ping. Effects of the Antiferromagnetic Spin Coupling and Interdot Coulomb Repulsion on Kondo Effects in Serial Double Quantum Dots[J]. Chin. Phys. Lett., 2014, 31(04): 047301
[7] WANG Hao, WU Guo-Xing. The Performance Characteristics of a Nano-thermoelectric Refrigerator Driven by an External Stochastic Force[J]. Chin. Phys. Lett., 2013, 30(5): 047301
[8] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 047301
[9] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 047301
[10] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 047301
[11] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 047301
[12] CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 047301
[13] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 047301
[14] ZHOU Xing-Fei, CUI Cheng-Yi, ZHANG Jin-Hai, LIU Jian-Hua, LIU Jing-Song. Comparative Study on Polarization of DNA and CdSe Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(3): 047301
[15] XU Zhang-Cheng, ZHANG Ya-Ting, Jø, rn M. Hvam, Yoshiji Horikoshi. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers[J]. Chin. Phys. Lett., 2009, 26(5): 047301
Viewed
Full text


Abstract