Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 045201    DOI: 10.1088/0256-307X/29/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Operational Tau Approximation for the Fokker–Planck Equation
S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani
Department of Mathematics, Islamic Azad University, Farsan Branch, Farsan, Iran
Cite this article:   
S. S. Dehcheshmeh, S. Karimi Vanani, J. S. Hafshejani 2012 Chin. Phys. Lett. 29 045201
Download: PDF(423KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An extension of the operational Tau method (OTM) is used to solve the Fokker–Planck equation arising in many physical problems. This extension yields an algebraic equivalent representation of the desired problem using arbitrary polynomial basis functions to decrease the size of the computations. The structure, properties and advantages of the OTM are presented, and some illustrative linear and nonlinear experiments are given to show the capability and efficiency of the proposed algorithm.
Received: 31 December 2011      Published: 04 April 2012
PACS:  52.65.Ff (Fokker-Planck and Vlasov equation)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/045201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/045201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. S. Dehcheshmeh
S. Karimi Vanani
J. S. Hafshejani
[1] Risken H 1989 The Fokker–Planck Equation: Method of Solution and Applications (Berlin: Springer)
[2] Jesson D E 2003 Trans. R. Soc. South Africa 58 141
[3] Apostolova T and Troev T 2010 J. Phys.: Conf. Ser. 207 012034
[4] Frank T D 2004 Physica A 331 391
[5] Palleschi V and Rosa M 1992 Phys. Lett. A 163 381
[6] Palleschi V, Sarri F, Marcozzi G and Torquati M R 1990 Phys. Lett. A 146 387
[7] Leung K, Shizgal B D and Chen H 1998 J. Math. Chem. 24 291
[8] Dehghan M and Tatari M 2006 Phys. Scr. 74 310
[9] Dehghan M and Tatari M 2007 Math. Comput. Model 45 639
[10] Jafari M A and Aminataei A 2009 Phys. Scr. 80 217
[11] Ortiz E L and Samara H 1983 Computing 31 95
[12] Lanczos C 1938 J. Math. Phys. 17 123
[13] Vanani S K and Aminataei A 2011 Comput. Math. Appl. 62 1075
[14] Vanani S K and Soleymani F 2012 Math. Comput. Model. (in press)
[15] Vanani S K and Aminataei A 2011 Comput. Appl. Math. 30 655
[16] Haghani F K, Vanani S K and Hafshejani J S 2011 World Appl. Sci. J. 13 18
[17] Hafshejani J S, Vanani S K and Esmaily J 2011 J. Appl. Sci. 14 2585
[18] Liu K M and Ortiz E L 1986 Comput. Math. Appl. B 12 1153
[19] Ortiz E L and Pun K S 1985 J. Comput. Appl. Math. 12 511
[20] Ortiz E L and Samara H 1984 Comput. Math. Appl. 10 5
[21] EL-Daou M K and Khajah H G 1997 Math. Comput 66 207
[22] Liu K M and Pan C K 1999 Comput. Math. Appl. 38 197
[23] Odibat Z and Momani S 2007 Phys. Lett. A 369 349
[24] Yildirim A 2010 J. King Saud University 22 257
Related articles from Frontiers Journals
[1] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 045201
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 045201
[3] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 045201
[4] CHEN Shao-Yong, TANG Chang-Jian, ZHANG Xin-Jun. Synergy Current Driven by Combined Lower Hybrid Wave and Different Polarized Electron Cyclotron Wave in Tokamak Plasma[J]. Chin. Phys. Lett., 2013, 30(6): 045201
[5] DENG Bai-Quan, G. A. Emmert, PENG Li-Lin. Additional Beta due to Fast Fusion Products in D-3He Fusion Plasma[J]. Chin. Phys. Lett., 2003, 20(4): 045201
[6] LI Xiao-Qing, ZHANG Hang. Acceleration of Flare Protons by Langmuir Plasmons[J]. Chin. Phys. Lett., 2002, 19(2): 045201
Viewed
Full text


Abstract