Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 044207    DOI: 10.1088/0256-307X/29/4/044207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method
YAN Qin,LU Jian,NI Xiao-Wu**
Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094
Cite this article:   
YAN Qin, LU Jian, NI Xiao-Wu 2012 Chin. Phys. Lett. 29 044207
Download: PDF(589KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A zero-crossing dynamic speckle method is proposed to determine the velocities of nanoparticles in nanofluids. A Gaussian laser beam is used to illuminate nanofluids in a pipe, and the dynamic speckles are detected by a spatially integrating detector with an aperture. The integrated speckle intensity signal is processed by a computer and the zero-crossing rate is counted. The velocity of the nanoparticles can be determined from its relationship to zero-crossing rate. The results show that the nanoparticles exhibit features of flowing nanofluids, and when the average velocity of the nanofluids is 53.4 mm/s, the average velocity of the nanoparticles is 51.8±5.1 mm/s.
Received: 12 October 2011      Published: 04 April 2012
PACS:  42.25.Fx (Diffraction and scattering)  
  42.30.Ms (Speckle and moiré patterns)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/044207       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/044207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Qin
LU Jian
NI Xiao-Wu
[1] Choi S U S 1995 ASME FED 231 99
[2] Lee S, Choi S U S, Lu S and Eastman J A 1999 ASME J. Heat Transfer 121 280
[3] Eastman J A, Choi S U S 2001 Appl. Phys. Lett. 78 718
[4] Choi S U S, Zhang Z G, Yu W, Lockwood F E and Grulke E A 2001 Appl. Phys. Lett. 79 2252
[5] Xuan Y M and Roetzel W F 2000 Int. J. Heat Mass Transfer 43 3701
[6] Jang S P and Choi S U S 2004 Appl. Phys. Lett. 84 4316
[7] Prasher R, Brattacharya P and Phelan P E 2005 Phys. Rev. Lett. 94 025901
[8] Evans W, Fish J and Keblinski P 2006 Appl. Phys. Lett. 88 093116
[9] Chon C H and Kihm K D 2005 Appl. Phys. Lett. 87 153107
[10] Chon C H and Kihm K D 2005 ASME J. Heat. Transfer 127 810
[11] Qian M, Liu J, Shen Z H and Lu J 2008 Lasers Engin. 18 203
[12] Yan Q, Lu J and Ni X W 2009 Chin. Phys. Lett. 26 044201
[13] Qian M, Yan Q and Ni X W 2009 Acta Opt. Sin. 29 290 (in Chinese)
[14] Kowalczyk M 1996 Proc. SPIE 2729 139
[15] Kowalczyk M 1996 Proc. SPIE 2729 147
[16] Asakura T and Takai N 1981 Appl. Phys. 25 179
[17] Qian M, Ni X W and Shen Z H 2008 Key Engin. Mater. 364 1111
[18] Yan Q, Zhou Z B etc 2002 Chin. Phys. Lett. 19 169
[19] Batchelor G K 1967 An Introduction to Fluid Dynamics (Landon: Cambridge University) p 233
Related articles from Frontiers Journals
[1] Xu-Zhen Gao, Meng-Shuai Wang, Jia-Hao Zhao, Peng-Cheng Zhao, Xia Zhang, Yue Pan, Yongnan Li, Chenghou Tu, and Hui-Tian Wang. Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry[J]. Chin. Phys. Lett., 2020, 37(12): 044207
[2] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 044207
[3] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 044207
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 044207
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 044207
[6] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 044207
[7] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 044207
[8] Yi Ruan, Kan Li, Qiang Lin, Ting Zhang. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method[J]. Chin. Phys. Lett., 2018, 35(4): 044207
[9] Yi-Peng Zheng, Jin-Hai Si, Wen-Jiang Tan, Xiao-Jing Liu, Jun-Yi Tong, Xun Hou. Imaging Transparent Objects in a Turbid Medium Using a Femtosecond Optical Kerr Gate[J]. Chin. Phys. Lett., 2017, 34(10): 044207
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 044207
[11] Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang, Dong-Xiang Zhang, Xin Xu, Jia-Sheng Ye, Yan Zhang, Dong-Mei Li, Qing-Bo Meng, Li Pan, Guo-Zhen Yang. Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics[J]. Chin. Phys. Lett., 2016, 33(09): 044207
[12] Ya-Ming Xie, Chang-Yu Liu, Ze-Jun Ding, Zhi-Guo Wang. Optimization Design of Electromagnetic Nihility Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(09): 044207
[13] Yang Miao, Can Wu, Ning Wang, Jia-Qi You. Angle Compensation and Asymmetry Effect of Light Diffracted by Millimeter Liquid Surface Slosh Wave[J]. Chin. Phys. Lett., 2016, 33(07): 044207
[14] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 044207
[15] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 044207
Viewed
Full text


Abstract