Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 027501    DOI: 10.1088/0256-307X/29/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Domain Rotation Simulation of the Magnetostriction Jump Effect of <110> Oriented TbDyFe Crystals
ZHANG Chang-Sheng, MA Tian-Yu**, PAN Xing-Wen, YAN Mi
Department of Materials Science and Engineering, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027
Cite this article:   
ZHANG Chang-Sheng, YAN Mi, PAN Xing-Wen et al  2012 Chin. Phys. Lett. 29 027501
Download: PDF(772KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The compressive pre-stress induced magnetostriction jump effect of an [110] oriented TbDyFe crystal is simulated by tracking the initial redistribution of magnetic domains and their volume fraction evolutions under external magnetic fields. Through searching for the free energy minima within both (110) and (110) planes, it is found that the axial compressive pre−stress not only switches magnetizations of the 35° domains toward the perpendicular plane, but also switches magnetizations of the 90° domains approaching the [110] direction. When increasing the stress magnitude, the volume fraction for 35° domains decreases and the one for the [110] domain increases rapidly. However, the volume fraction for the four 90° domains within the perpendicular plane first increases to a maximum under a certain stress magnitude and further decreases. The stress-induced anisotropy thereafter changes the volume fraction evolutions during the magnetization process, which explains well the magnetostriction jump effect.
Keywords: 75.80.+q      75.50.Bb     
Received: 14 November 2011      Published: 11 March 2012
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.50.Bb (Fe and its alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/027501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/027501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Chang-Sheng
YAN Mi
PAN Xing-Wen
MA Tian-Yu
[1] Clark A E et al 1988 J. Appl. Phys. 63 3910
[2] Yang Y V et al 2011 Appl. Phys. Lett. 98 012503
[3] Jiang C B et al 2008 J. Phys. D: Appl. Phys. 41 155012
[4] Wu G H et al 1995 Appl. Phys. Lett. 67 2005
[5] Pei Y M and Fang D N 2007 Chin. Phys. Lett. 24 161
[6] Ma T Y et al 2005 Appl. Phys. Lett. 86 162505
[7] Wang Z B et al 2011 J. Appl. Phys. 109 123923
[8] Pei Y M et al 2009 J. Magn. Magn. Mater. 321 2783
[9] Zhang T L et al 2004 Smart Mater. Struct. 13 473
[10] Zhang H 2011 Appl. Phys. Lett. 98 232505
[11] Zhou Y et al 2011 Chin. Phys. Lett. 28 107503
[12] Hao Y M et al 2009 Chin. Phys. Lett. 26 026501
[13] Jin Y M and Chopra H D 2011 Phys. Rev. B 84 140401
[14] Zheng X J and Liu X E 2005 J. Appl. Phys. 97 053901
[15] Jiles D C and Thoelke J B 1991 IEEE Trans. Magn. 27 5352
[16] Mei W et al 1998 J. Appl. Phys. 84 6208
[17] Wang Z B et al 2010 J. Appl. Phys. 108 063908
[18] Clark A E 1980 Ferromagnetic Materials ed Wohlfarth E P (Amsterdam: North Holland) vol 1 p 531
[19] Armstrong W D 1997 J. Appl. Phys. 81 2321
Related articles from Frontiers Journals
[1] CHEN Hai-Ying, ZHANG Yan, YANG Yun-Bo, CHEN Xue-Gang, LIU Shun-Quan, WANG Chang-Sheng, YANG Ying-Chang, YANG Jin-Bo, ** . Magnetostrictions and Magnetic Properties of Nd-Fe-B and SrFe12O19[J]. Chin. Phys. Lett., 2011, 28(7): 027501
[2] CHENG Zhi-Da, ZHU Jing, **, TANG Zheng . Noncollinear Magnetism Calculation of Iron Clusters with Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(3): 027501
[3] WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An** . Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. Chin. Phys. Lett., 2011, 28(2): 027501
[4] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 027501
[5] LIU Shun-Quan, HAN Jing-Zhi, WANG Chang-Sheng, YANG Jin-Bo, DU Hong-Lin, YANG Ying-Chang. Structural and Magnetic Properties of Nd(Fe,Mo)12Nx Compounds Produced by Strip-Casting Method[J]. Chin. Phys. Lett., 2010, 27(9): 027501
[6] ZHU Xiao-Xi, LIU Jing-Hua, JIANG Cheng-Bao. Elastic Modulus of Fe72.5Ga27.5 Magnetostrictive Alloy[J]. Chin. Phys. Lett., 2010, 27(6): 027501
[7] Ugur Topal**. Evolution of Structural and Magnetic Properties of BaFe12O19 with B2O3 Addition[J]. Chin. Phys. Lett., 2010, 27(11): 027501
[8] LIU Jun-Ming, , CHAN-WONG Lai-Wa, CHOY Chung-Loong. Magnetoelectric Coupling Induced Electric Dipole Glass State in Heisenberg Spin Glass[J]. Chin. Phys. Lett., 2009, 26(8): 027501
[9] BAI Qin, XU Hui, TAN Xiao-Hua, MENG Tao. Effect of Zr Addition on Glass-Forming Ability and Magnetic Properties of Fe-Nd-Al-B Alloys Prepared by Suction Casting[J]. Chin. Phys. Lett., 2009, 26(5): 027501
[10] HAO Yan-Ming, ZHANG Yan-Yan, JIANG Xin-Yuan, GAO Chun-Jing, WU Yan-Zhao. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound[J]. Chin. Phys. Lett., 2009, 26(2): 027501
[11] ZHOU Dong, LI Zhi-Wei, YANG Xu, WEN Fu-Sheng, LI Fa-Shen. Fabrication and Mossbauer Study of FeCo Alloy Nanotube Array[J]. Chin. Phys. Lett., 2008, 25(5): 027501
[12] JIANG Hong-Chuan, ZHANG Wan-Li, ZHANG Wen-Xu, PENG Bin. Composition-Controlled Low Field Magnetostriction of TbFe Amorphous Films[J]. Chin. Phys. Lett., 2008, 25(4): 027501
[13] YANG Chang-Ping, DENG Heng, CHEN Shun-Sheng, WANG Hao, WEN Zhen-Chao, HAN Xiu-Feng, K. Bä, rner. Correlation between Electroresistance and Magnetoresistance in Slight Oxygen-Deficient Nd0.67Sr0.33MnO3-δ Polycrystalline Ceramics[J]. Chin. Phys. Lett., 2008, 25(10): 027501
[14] LI Zong-Mu, XU Fa-Qiang, WANG Li-Wu, WANG Jie, ZHU Jun-Fa, ZHANG Wen-Hua. X-Ray Magnetic Circular Dichroism Measurement of Fe--Co Alloy Films Prepared by Electrodeposition[J]. Chin. Phys. Lett., 2007, 24(9): 027501
[15] PEI Yong-Mao, FANG Dai-Ning. Young's Modulus Anisotropy and Magnetomechanical Damping of [110]Oriented Tb0.3 Dy0.7 Fe1.95 Alloy[J]. Chin. Phys. Lett., 2007, 24(6): 027501
Viewed
Full text


Abstract