ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Local Field Distributions in Systems with Dipolar Interaction |
YAN Yue1, WU Biao2** |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2International Center for Quantum Materials, Peking University, Beijing 100871 |
|
Cite this article: |
YAN Yue, WU Biao 2012 Chin. Phys. Lett. 29 013203 |
|
|
Abstract We investigate systematically the local field distribution functions of up-spins for systems of dipolar interaction, with particular emphasis on Ising-type lattice systems. It is found that as the fraction increases, the shape of the distribution function changes from Lorentzian to Gaussian. In addition, sub-peaks can be induced in the distribution function by non-cubic lattice structures. This is in stark contrast with a dilute gas system, where the distribution has only one Lorentzian peak for any up-spin fraction.
|
Keywords:
32.10.Dk
02.30.Nw
02.50.Ng
|
|
Received: 30 September 2011
Published: 07 February 2012
|
|
PACS: |
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
02.30.Nw
|
(Fourier analysis)
|
|
02.50.Ng
|
(Distribution theory and Monte Carlo studies)
|
|
|
|
|
[1] Wernsdorfer W, Sessoli R, Caneschi A, Gatteschi D, Cornia A and Mailly D 2000 J. Appl. Phys. 87 5481 [2] Wernsdorfer W, Ohm T, Sangregorio C, Sessoli R, Mailly D and Paulsen C 1999 Phys. Rev. Lett. 82 3903 [3] Liu J, Wu B, Fu L B, Diener R B and Niu Q 2002 Phys. Rev. B 65 224401 [4] Chen Z D, Liang J Q and Shen S Q 2002 Phys. Rev. B 66 092401 [5] Liu H Q, Su S K, Jing X N, Liu Y, He L H, Ge P W, Yan Q W and Wang Y P 2007 Chin. Phys. Lett. 24 532 [6] Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P and Santos L 2005 Phys. Rev. Lett. 95 150406 [7] Lahaye T, Metz J, Fröhlich B, Koch T, Meister M, Griesmaier A, Pfau T, Saito H, Kawaguchi Y and Ueda M 2008 Phys. Rev. Lett. 101 080401 [8] Ni K K, Ospelkaus S, de Miranda M H G, Pé er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231 [9] Abragam A 1999 Principles of Nuclear Magnetism (New York: Oxford) [10] Klein M W, Held C and Zuroff E 1976 Phys. Rev. B 13 3576 [11] Berkov D V and Meshkov S V 1988 Sov. Phys. JETP 67 2255 [12] Berkov D V 1996 Phys. Rev. B 53 731 [13] Margenau H 1935 Phys. Rev. 48 755 [14] Klein M W 1968 Phys. Rev. 173 552 [15] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1 [16] Abramowitz M and Stegun T A 1970 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover) [17] del Barco E, Vernier N, Hernandez J M, Tejada J, Chudnovsky E M, Molins E and Bellessa G 1999 Europhys. Lett. 47 722 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|