NUCLEAR PHYSICS |
|
|
|
|
Symmetry Energy Effects in a Statistical Multifragmentation Model |
ZHANG Lei1**, GAO Yuan1,2 , ZHANG Hong-Fei2, CHEN Xi-Meng2, Yu Mei-Ling1, LI Jun-Qing3
|
1School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310018
2School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000
3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
|
|
Cite this article: |
ZHANG Lei, GAO Yuan, ZHANG Hong-Fei et al 2011 Chin. Phys. Lett. 28 112102 |
|
|
Abstract The symmetry energy effects on the nuclear disintegration mechanisms of the neutron-rich system (A0=200, Z0=78) are studied in the framework of the statistical multifragmentation model (SMM) within its micro-canonical ensemble. A modified symmetry energy term with consideration of the volume and surface asymmetry is adopted instead of the original invariable value in the standard SMM model. The results indicate that as the volume and surface asymmetries are considered, the neutron-rich system translates to a fission-like process from evaporation earlier than the original standard SMM model at lower excitation energies, and its mass distribution has larger probabilities in the medium-heavy nuclei range so that the system breaks up more averagely. When the excitation energy becomes higher, the volume and surface asymmetry lead to a smaller average multiplicity.
|
Keywords:
21.65.-f
25.60.Gc
25.70.Pq
|
|
Received: 01 February 2011
Published: 30 October 2011
|
|
PACS: |
21.65.-f
|
(Nuclear matter)
|
|
25.60.Gc
|
(Breakup and momentum distributions)
|
|
25.70.Pq
|
(Multifragment emission and correlations)
|
|
|
|
|
[1] Bondorf J, Botvina A A and Sneppen K 1995 Phys. Rep. 257 133
[2] Pan J and Das Gupta S 1995 Phys. Rev. C 51 1384
[3] Das Gupta S, Pan J and Tsang M B 1996 Phys. Rev. C 54 R2820
[4] Bauer W 1988 Phys. Rev. C 38 1297
[5] Pratt S, Montoya C and Ronning F 1995 Phys. Lett. B 349 261
[6] Das Gupta S and Mekjian A Z 1998 Phys. Rev. C 57 1361
[7] Botvina A S Iljinov A S and Mishustin I N 1987 Nucl. Phys. A 475 663
[8] Finn J E 1982 Phys. Rev. Lett 49 1321
[9] Minich R W et al 1982 Phys. Lett. B 118 458
[10] Hirsch A S 1984 Phys. Rev. C 29 508
[11] Bondorf J P 1985 Nucl. Phys. A 443 321
[12] Bondorf J P, Donangelo R, Mishusting I N and Schulz H 1985 Nucl. Phys. A 444 460
[13] Sneppen K 1987 Nucl. Phys. A 470 213
[14] Barz H W, Bondorf J P, Donangelo R, Mishusin I N and Schulz H 1986 Nucl. Phys. A 448 753
[15] Gross D H E 1997 Phys. Rep 279 119
[16] Reuter P T and Bugaev K A 2001 Phys. Lett. B 517 233
[17] Tsang M B, Gelbke C K and Liu X D 2001 Phys. Rev. C 64 054615
[18] Raduta Ad R and Gulminelli F 2007 Phys. Rev. C 75 024605
[19] Bondorf J P, Botvina A S and Mishustin I N 1998 Phys. Rev. C 58 R27
[20] Aguiar C E, Donangelo R and Souza S R 2006 Phys. Rev. C 73 024613
[21] Souza S R, Carlson B V and Donangelo R 2009 Phys. Rev. C 79 054602
[22] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[23] Baran V, Colonna M, Greco V and Toro M D 2005 Phys. Rep. 410 335
[24] Shetty D V and Yennello S J 2010 Pramana J. Phys. 75 259
[25] Dieperink A E L and Isacker P V 2007 Eur. Phys. J. A 32 11
[26] Danielewicz P 2003 Nucl. Phys. A 727 233
[27] Li B A, Yong G C and Zuo W 2005 Phys. Rev. C 71 014608
[28] Das C B, Das G S and Gale C 2003 Phys. Rev. C 67 034611
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|