CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1−x/Ge Heterojunction Diodes |
QIN Yu-Feng1,2, YAN Shi-Shen1, KANG Shi-Shou1, XIAO Shu-Qin1, LI Qiang1, DAI Zheng-Kun1, SHEN Ting-Ting1, DAI You-Yong1**, LIU Guo-Lei1, CHEN Yan-Xue1, MEI Liang-Mo1, ZHANG Ze3
|
1School of Physics, and National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
2Department of Physics, School of Information, Shandong Agricultural University, Taian 271018
3Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
QIN Yu-Feng, YAN Shi-Shen, KANG Shi-Shou et al 2011 Chin. Phys. Lett. 28 107501 |
|
|
Abstract FexGe1−x/Ge amorphous heterojunction diodes with p-FexGe1−x ferromagnetic semiconductor layers are grown on single-crystal Ge substrates of p-type, n-type and intrinsic semiconductors, respectively. The I–V curves of p−Fe0.4Ge0.6/p−Ge diodes only show slight changes with temperature or with magnetic field. For the p-Fe0.4Ge0.6/n−Ge diode, good rectification is maintained at room temperature. More interestingly, the I–V curve of the p−Fe0.4Ge0.6/i-Ge diode can be tuned by the magnetic field, indicating a large positive magnetoresistance. The resistances of the junctions decrease with the increasing temperature, suggesting a typical semiconductor transport behavior. The origin of the positive magnetoresistance is discussed based on the effect of the electric and magnetic field on the energy band structures of the interface.
|
Keywords:
75.50.Pp
73.43.Qt
73.40.Ei
73.40.Lp
|
|
Received: 30 December 2010
Published: 28 September 2011
|
|
|
|
|
|
[1] Ohno H, Sher A, Matsukura F, Oiwa A, Eudo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
[2] Park Y D, Hanbicki A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G and Jonker B T 2002 Science 295 651
[3] Shuto Y, Tanaka M and Sugahara S 2006 J. Appl. Phys. 99 08D516
[4] Chen Y X, Yan S S, Fang Y, Tian Y F, Xiao S Q, Liu G L, Liu Y H and Mei L M 2007 Appl. Phys. Lett. 90 52508
[5] Xie Y W, Sun J R, Wang D J, Liang S, Lü M and Shen B G 2007 Appl. Phys. Lett. 90 192903
[6] Guo S M, Zhao Y G, Xiong C M, Huang W G, Cheng Z H and Xi X X 2007 Appl. Phys. Lett. 91 143509
[7] Mitra C, Raychaudhuri P, Dörr K, Müler K H, Schultz L, Oppeneer P M and Wirth S 2003 Phys. Rev. Lett. 90 017202
[8] Zhao K, Jin K J, Lu H B, He M, Huang Y H, Yang G Z and Zhang J D 2008 Appl. Phys. Lett. 93 , 252110
[9] Lü W M, Sun J R, Wang D J, Xie Y W, Liang S, Chen Y Z and Shen B G 2008 Appl. Phys. Lett. 92 062503
[10] Zhou T F, Li G, Wang N Y, Wang B M, Li X G and Chen Y 2006 Appl. Phys. Lett. 88 232508
[11] Qu T L, Zhao Y G, Tian H F, Xiong C M, Guo S M and Li J Q 2007 Appl. Phys. Lett. 90 223514
[12] Chen X M, Ruan K B, Wu G H and Bao D H 2008 Appl. Phys. Lett. 93 112112
[13] Tsui F, Ma L and He L 2003 Appl. Phys. Lett. 83 954
[14] Majumdar S, Das A K and Ray S K 2009 Appl. Phys. Lett. 94 122505
[15] Tian Y F, Deng J X, Yan S S, Dai Y Y, Zhao M W, Chen Y X, Liu G L, Mei L M, Liu Z Y and Sun J R 2010 J. Appl. Phys. 107 024514
[16] Qin Y F, Yan S S, Kang S S, Xiao S Q, Zhang Q, Yao X X, Xu T S, Tian Y F, Dai Y Y, Liu G L, Chen Y X, Mei L M, Ji G and Zhang Z 2011 Phys. Rev. B 83 235214
[17] Binasch G, Grünberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|