Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 097302    DOI: 10.1088/0256-307X/28/9/097302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Quantum Hall Effect and Different Zero-Energy Modes of Graphene
M. R. Setare1,2*, D. Jahani1,2**
1Department of Science, Payame Noor University, Bijar, Iran
2Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Cite this article:   
M. R. Setare, D. Jahani 2011 Chin. Phys. Lett. 28 097302
Download: PDF(425KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of an inhomogeneous magnetic field, which varies inversely with distance on the ground state energy level of graphene, is studied. We analytically show that graphene under the influence of a magnetic field arising from a straight long current-carrying wire (proportional to the magnetic field from carbon nanotubes and nanowires) exhibits zero-energy solutions and find that contrary to the case of a uniform magnetic field for which the zero-energy modes show the localization of electrons entirely on just one sublattice corresponding to a single valley Hamiltonian, zero-energy solutions in this case reveal that the probabilities for the electrons to be on both sublattices, say A and B, are the same.
Keywords: 73.63.Fg      72.10.-d      03.65.Ge     
Received: 18 October 2010      Published: 30 August 2011
PACS:  73.63.Fg (Nanotubes)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/097302       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/097302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. R. Setare
D. Jahani
[1] Novoselov K S, Geim A K, Morozov S V and Jiang D 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Wallace P R 1947 Phys. Rev. 71 622
[4] Setare M R and Jahani D 2010 J. Phys. Condens. Matter 22 245503
[5] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[6] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Mann J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[7] Hosfstadter D R 1976 Phys. Rev. B 14 2239
[8] Rammal R 1985 J. Phys. 46 1345
[9] Wakabayashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[10] Gusynin V P and Sharapov S G 2006 Phys. Rev. B 73 245411
[11] Witten E 1981 Nucl. Phys. B 188 513
[12] Cooper F and Freeman B 1983 Ann. Phys. 146 262
[13] Gendenshtein L 1983 JETP Lett. 38 356
[14] Cooper F, Khare A and Sukhatme U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[15] Setare M R and Jahani D 2011 Int. J. Mod. Phys. B 25 365
[16] Kuru Ş, Negro J and Nieto L M 2009 J. Phys.: Condens. Matter 21 455305
[17] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 097302
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 097302
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 097302
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 097302
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 097302
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 097302
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 097302
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 097302
[9] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 097302
[10] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 097302
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 097302
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 097302
[13] WEI Ang, LI Wei-Wei, WANG Jing-Xia, LONG Qing, WANG Zhao, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Single-Walled Carbon Nanotube Networked Field-Effect Transistors Functionalized with Thiolated Heme for NO2 Sensing[J]. Chin. Phys. Lett., 2011, 28(12): 097302
[14] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 097302
[15] LIAO Bin, WU Xian-Ying, LIANG Hong, ZHANG Xu, LIU An-Dong. Preparation and Photocurrent Performance of Highly Ordered Titania Nanotube Implanted with Ag/Cu Metal Ions[J]. Chin. Phys. Lett., 2010, 27(7): 097302
Viewed
Full text


Abstract