ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Influence of Isotope Effects on the Stereodynamics of the N(4S)+H2 → NH+H Reactive System: a QCT Study |
ZHANG Juan1, CHU Tian-Shu2**, DONG Shun-Le1**, YUAN Shu-Ping2, FU Ai-Ping2, DUAN Yun-Bo2
|
1College of Information Science and Engineering, Ocean University of China, Qingdao 266071
2Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textiles, the Growing Base for the State Key Laboratory, Qingdao University, Qingdao 266071
|
|
Cite this article: |
ZHANG Juan, CHU Tian-Shu, DONG Shun-Le et al 2011 Chin. Phys. Lett. 28 093403 |
|
|
Abstract To investigate the isotopic effects and their influence on the stereodynamical properties of the N(4S)+H2 reaction system, quasi−classical trajectory (QCT) calculations are carried out on the 4A" double many−body expansion (DMBE) potential energy surface (PES) [Phys. Chem. Chem. Phys. 7 (2005) 2867] at a collision energy of 40 kcal/mol. The generalized polarization-dependent differential cross sections (PDDCSs) and the three angular distributions of P(θr), P(φr) and P(θr,φr) are presented and discussed for the title reaction and its isotope variants. It is revealed that both intermolecular and intramolecular isotope effects can exert a substantial influence on the product polarizations.
|
Keywords:
34.10.+x
34.50.Lf
|
|
Received: 24 May 2011
Published: 30 August 2011
|
|
PACS: |
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
34.50.Lf
|
(Chemical reactions)
|
|
|
|
|
[1] Xu Z F, Fang D C and Fu X Y 1997 J. Phys. Chem. A 101 4432
[2] Zhang S and Truong T N 2000 J. Chem. Phys. 113 6149
[3] Pascual R Z, Schatz G C, Lendvay G and Troya D 2002 J. Phys. Chem. A 106 4125
[4] Han B, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
[5] Koshi M J 1990 J. Chem. Phys. 93 8703
[6] Davidson D F and Hanson R K 1990 Int. J. Chem. Kin. 22 843
[7] Arom L, Hack W, Zhu H, Qu Z –W and Schinke R 2005 J. Chem. Phys. 122 114301
[8] Jordan M J T, Thompson K C and Collins M A 1995 J. Chem. Phys. 102 5647
[9] Varandas A J C 1988 Adv. Chem. Phys. 74 255
[10] Poveda LA and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
[11] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
[12] Yao H B and Zheng Y J 2011 Phys. Chem. Chem. Phys. 13 8900
[13] Ge M H and Zheng Y J 2011 Theor. Chem. Acc. 129 173
[14] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[15] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[16] Shafer-Ray N E, Orr-Ewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
[17] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[18] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[19] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[20] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 20204
[21] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[22] Chen M D, Han K L and Lou N Q 2002 J. Chem. Phys. 283 463
[23] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[24] Zhang X and Han K L 2006 Int. J. Quant. Chem. 106 1815
[25] Han K L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
[26] Zhang J P, Yang H P, Han K L, Deng W Q, He G Z and Lou N Q 1997 J. Phys. Chem. A 101 7486
[27] Zhang L, Chen M D, Wang M L and Han K L 2000 J. Chem. Phys. 112 3710
[28] Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|