Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090507    DOI: 10.1088/0256-307X/28/9/090507
GENERAL |
Coherence-Resonance-Induced Neuronal Firing near a Saddle-Node and Homoclinic Bifurcation Corresponding to Type-I Excitability
JIA Bing1,2, GU Hua-Guang1,2**, LI Yu-Ye2
1School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092
2College of Life Science, Shaanxi Normal University, Xi'an 710062
Cite this article:   
JIA Bing, GU Hua-Guang, LI Yu-Ye 2011 Chin. Phys. Lett. 28 090507
Download: PDF(1296KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Excitability is an essential characteristic of excitable media such as nervous and cardiac systems. Different types of neuronal excitability are related to different bifurcation structures. We simulate the coherence resonance effect near a saddle-node and homoclinic bifurcation corresponding to type-I excitability in a theoretical neuron model, and recognize the obvious features of the corresponding firing pattern. Similar firing patterns are discovered in rat hippocampal CA1 pyramidal neurons. The results are not only helpful for understanding the dynamics of the saddle-node bifurcation and type-I excitability in a realistic nervous system, but also provide a practical indicator to identify types of excitability and bifurcation.
Keywords: 05.45.-a      87.19.L-     
Received: 05 May 2011      Published: 30 August 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.L- (Neuroscience)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090507       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Bing
GU Hua-Guang
LI Yu-Ye
[1] Izhikevich E M 2000 Int. J Bifur. Chaos 10 1171
[2] Zhang N, Zhang H M, Liu Z Q, Ding X L, Yang M H, Gu H G and Ren W 2009 Chin. Phys. Lett. 26 110501
[3] Hodgkin A L 1948 J. Physiol. 107 165
[4] Tateno T, Harsch A and Robinson H P C 2004 J. Neurophysiol. 92 2283
[5] Galán R F, Ermentrout G B and Urban N N 2005 Phys. Rev. Lett. 94 158101
[6] Tateno T, Harsch A and Robinson H P C 2007 Biophys. J 92 683
[7] Prescott S A, Ratté S, Koninck Y D and Sejnowski T J 2008 J. Neurophysiol. 100 3030
[8] Xie Y, Xu J X, Kang Y M, Hu S J and Duan Y B 2004 Chin. Phys. 13 1396
[9] Gutkin B S and Ermentrout G B 1998 Neural Comput. 10 1047
[10] Ermentrout G B 1996 Neural Comput. 8 979
[11] Prescott S A, De Koninck Y, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198
[12] Liu Y, Yang J and Hu S J 2008 J. Comput. Neurosci. 24 95
[13] Wang W, Wang Y Q and Wang Z D 1998 Phys. Rev. E 57 R2527
[14] Yu Y G, Wang W, Wang J F, Liu F 2001 Phys. Rev. E 63 021907
[15] Wang W and Wang ZD 1997 Phys. Rev. E 55 7379
[16] Gu H G, Jia B and Lu Q S 2011 Cogn. Neurodyn. 5 87
[17] Gu H G, Ren W, Lu Q S, Wu S G, Yang M H and Chen W J 2001 Phys. Lett. A 285 63
[18] Yang M H, Liu Z Q, Li L, Xu Y L, Liu H J, Gu H G and Ren W 2009 Int. J. Bifur. Chaos 19 453
[19] Braun H A, Wissing H and Schäfer K 1994 Nature 367 270
[20] Xing J L, Hu S J, Xu H, Han S and Wan Y H 2001 NeuroReport 12 1311
[21] Tateno T and Pakdaman K 2004 Chaos 14 511
[22] Lim W and Kim S Y 2007 J. Korean Phys. Soc. 50 239
[23] Morris C and Lecar H 1981 Biophys. J 35 193
[24] Mannella R and Palleschi V 1989 Phys. Rev. A 40 3381
[25] Yooer C F, Wei F, Xu J X and Zhang X H 2011 Chin. Phys. Lett. 28 030501
[26] Pikovsky A S and Kurth J 1997 Phys. Rev. Lett. 78 775
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 090507
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 090507
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 090507
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 090507
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 090507
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 090507
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090507
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 090507
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 090507
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 090507
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 090507
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 090507
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 090507
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 090507
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 090507
Viewed
Full text


Abstract