Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 084212    DOI: 10.1088/0256-307X/28/8/084212
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Compact 2×2 Multi-Mode Interference Couplers with Uneven Splitting-Ratios Based on Silicon Nanowires
ZHOU Jing-Tao1**, SHEN Hua-Jun1, YANG Cheng-Yue1, LIU Huan-Ming1, TANG Yi-Dan1, LIU Xin-Yu1
Key Laboratory of Microelcectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
ZHOU Jing-Tao, SHEN Hua-Jun, YANG Cheng-Yue et al  2011 Chin. Phys. Lett. 28 084212
Download: PDF(697KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two types of uneven splitting-ratio 2×2 multi−mode interference (MMI) couplers based on silicon nanowires are designed, fabricated and characterized. The splitting ratios are 85:15 and 72:28, respectively. The devices have compact sizes and low excess losses. The footprints of the rectangular MMI region are only about 3 µm×18 µm and 3 µm×14 µm, and the minimum excess losses (ELs) are 1.30 dB and 0.82 dB. The measured splitting−ratios are consistent with the designed values. Based on their performance, these 2×2 MMI couplers are suitable candidates for the coupling section of microring resonators where a large resonance bandwidth is required for high speed signal processing. The uneven splitting capability also provides a convenient way to further optimize the Q factor and the bandwidth of the resonator.
Keywords: 42.79.Gn      42.79.-e      42.82.Et     
Received: 31 March 2011      Published: 28 July 2011
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.79.-e (Optical elements, devices, and systems)  
  42.82.Et (Waveguides, couplers, and arrays)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/084212       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/084212
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Jing-Tao
SHEN Hua-Jun
YANG Cheng-Yue
LIU Huan-Ming
TANG Yi-Dan
LIU Xin-Yu
[1] Little B, Chu S, Haus H, Foresi J and Laine J 1997 J. Lightwave Technol. 15 998
[2] Madsen C 1998 Photon. Technol. Lett. 10 1136
[3] Xu Q, Schmidt B, Pradhan S and Lipson M 2005 Nature 435 325
[4] Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Campenhout J, Taillaert D, Luyssert B, Bienstman P, Thourhout D and Baert R 2004 Photon. Technol. Lett. 16 1328
[5] Niehusmann J, Vöckel A, Bolivar P, Wahlbrink T and Henschel W 2004 Opt. Lett. 29 2861
[6] Emelett S and Soref R 2005 J. Lightwave Technol. 23 1800
[7] Xia F, Sekaric L and Vlasov Y 2006 Opt. Express 14 3872
[8] Yalcin A, Popat K, Aldridge J, Desai T, Hryniewicz J, Chbouk N, Little B, King O, Van V, Chu S, Gill D, Anthes-Washburn M and ÜnlüM 2006 J. Sel. Top. Quantum. Electron. 12 148
[9] Zhou J, Shen H, Zhang H and Liu X 2009 Chin. Opt. Lett. 7 1041
[10] Dai D, Mei W and He S 2003 Opt. Commun. 219 233
[11] Wei H, Yu J, Liu Z, Zhang X, Shi W and Fang C 2001 Chin. Phys. Lett. 18 245
[12] Bachmann M, Besse P and Melchior H 1994 Appl. Opt. 33 3905
[13] Soldano L and Pennings E 1995 J. Lightwave Technol. 3 615
Related articles from Frontiers Journals
[1] LIU Wei-Hua, ZHAO Yan-Li, XU Cheng-Zhi, ZHAO Jian-Yi, LIU Wen, XU Yuan-Zhong. Optical 90° Hybrid Based on an InP 4×4 Multimode Interference Coupler for Coherent Receiver Application[J]. Chin. Phys. Lett., 2012, 29(6): 084212
[2] ZHU Yun-Jin, HUANG Xu-Guang, MEI Xian. A Surface Plasmon Polariton Electro-Optic Switch Based on a Metal-Insulator-Metal Structure with a Strip Waveguide and Two Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(6): 084212
[3] CHENG Mu-Tian,SONG Yan-Yan,YU Long-Bao**. Transmission Characteristics in a Coupled-Resonator Waveguide Interacting with a Two-Mode Nanocavity Containing a Three-Level Emitter[J]. Chin. Phys. Lett., 2012, 29(5): 084212
[4] GUO Wei-Feng,ZHAO Yong,WANG Wan-Jun,SHAO Hai-Feng,YANG Jian-Yi,JIANG Xiao-Qing**. Design and Fabrication of a Monolithic Optoelectronic Integrated Circuit Chip Based on CMOS Compatible Technology[J]. Chin. Phys. Lett., 2012, 29(4): 084212
[5] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 084212
[6] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 084212
[7] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 084212
[8] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 084212
[9] SUN Xiao-Qiang, CHEN Chang-Ming, LI Xiao-Dong, WANG Xi-Bin, YANG Tian-Fu, ZHANG Da-Ming, WANG Fei**, XIE Zhi-Yuan**. Polymer Electro-optic Modulator Linear Bias Using the Thermo-optic Effect[J]. Chin. Phys. Lett., 2012, 29(1): 084212
[10] JING Lei, **, YAO Jian-Quan, . Single Mode Condition and Power Fraction of Air-Cladding Total Refractive Guided Porous Polymer Terahertz Fibers[J]. Chin. Phys. Lett., 2011, 28(8): 084212
[11] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 084212
[12] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 084212
[13] ZHAO Yong, XU Chao, WANG Wan-Jun, ZHOU Qiang, HAO Yin-Lei, YANG Jian-Yi, WANG Ming-Hua, JIANG Xiao-Qing** . Photocurrent Effect in Reverse-Biased p-n Silicon Waveguides in Communication Bands[J]. Chin. Phys. Lett., 2011, 28(7): 084212
[14] LUO Ya-Qin**, SONG Yan-Yan, GU Ling-Ming, LANG Jia-Hong, MA Xiao-San . Voltage-Controlled Scattering of Single Photons in a One-Dimensional Waveguide[J]. Chin. Phys. Lett., 2011, 28(7): 084212
[15] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 084212
Viewed
Full text


Abstract