FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime |
XIA Chang-Quan**, DENG Ai-Hua, LIU Li, WANG Wen-Tao, LU Hai-Yang, WANG Cheng, LIU Jian-Sheng
|
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800
|
|
Cite this article: |
XIA Chang-Quan, DENG Ai-Hua, LIU Li et al 2011 Chin. Phys. Lett. 28 084101 |
|
|
Abstract Acceleration of protons by a circularly polarized laser pulse irradiating on a double-layer target is investigated by a theoretical model and particle-in-cell simulations. The target is made up of a heavy ion layer coated with a proton layer on the rear surface. The results show that when the first layer is transparent induced by the hole-boring effect, the whole proton layer is accelerated by the transmitted laser pulse to high energy with low energy spread. The quality of the proton beam generated from a double-layer target is better than that from a single-layer target. The improvement is attributed to the flat top structure of the electrostatic field caused by the electrons injected into the second layer. It is easier to control the spectrum quality by using a double-layer target rather than using a single-layer one when the radiation pressure acceleration is dominant.
|
Keywords:
41.75.Jv
52.38.Kd
52.50.Jm
52.65.Rr
|
|
Received: 10 June 2011
Published: 28 July 2011
|
|
PACS: |
41.75.Jv
|
(Laser-driven acceleration?)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.50.Jm
|
(Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
|
|
|
[1] Roth M et al 2001 Phys. Rev. Lett. 86 436
[2] Mackinnon A J et al 2006 Phys. Rev. Lett. 97 045001
[3] Bulanov S V et al 2002 Phys. Lett. A 299 240
[4] Davis J and Petrov G M 2009 Phys. Plasmas 16 023105
[5] Brunel F 1987 Phys. Rev. Lett. 59 52
[6] Kruer W L, Estabrook K 1985 Phys. Fluids 28 430
[7] Snavely R A et al 2000 Phys. Rev. Lett. 85 2945
[8] Hatchett S P et al 2000 Phys. Plasmas 7 2076
[9] Mora P 2003 Phys. Rev. Lett. 90 185002
[10] Dong Q L et al 2003 Phys. Rev. E 68 026408
[11] Pfotenhauer S et al 2006 Nature 439 445
[12] Albright B J et al 2006 Nature 439 441
[13] Yan X Q et al 2008 Phys. Rev. Lett. 100 135003
[14] Doumy G et al 2006 Phys. Rev. E 69 026402
[15] Macchi A, Cattani F, Liseykina T V and Cornolti F 2006 Phys. Rev. Lett. 94 165003
[16] Esirkepov T et al 2004 Phys. Rev. Lett. 92 175003
[17] Lichters R, Meyer-ter-Vehn J and Pukhov A 1996 Phys. Plasmas 3 3425
[18] Xia C Q et al 2010 Phys. Plasmas 17 123113
[19] Tripathi V K et al 2009 Plasma Phys. Control. Fusion 51 024014
[20] Macchi A, Veghin S and Pegoraro F 2009 Phys. Rev. Lett. 103 085003
[21] Qiao B et al 2009 Phys. Rev. Lett. 102 145002
[22] Chen M et al 2009 Phys. Rev. Lett. 103 024801
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|