CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhanced Magnetic and Ferroelectric Properties and Current-Voltage Hysteresis by Addition of La and Ti to BiFeO3 on 0.7%Nb−SrTiO3 |
CHANG Hong1,2**, ZHAO Yong-Gang2
|
1School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021
2Department of Physics, Tsinghua University, Beijing100084
|
|
Cite this article: |
CHANG Hong, ZHAO Yong-Gang 2011 Chin. Phys. Lett. 28 067503 |
|
|
Abstract By adding La and Ti, we improve the magnetic and ferroelectric properties of Bi0.8La0.2Fe0.92Ti0.08O3 and Bi0.8La0.2FeO3 films on 0.7%Nb−SrTiO3. In Bi0.8La0.2Fe0.92Ti0.08O3 and Bi0.8La0.2FeO3, the saturation magnetization and the coercivity are several times higher than those in BiFeO3. The La and Ti additions reduce the leakage current, and increase the remnant electric polarization. A resistance switching is observed in Bi0.8La0.2Fe0.92Ti0.08O3/0.7%Nb−SrTiO3 and Bi0.8La0.2FeO3/0.7%Nb−SrTiO3 interfaces. Also, it is observed that Bi0.8La0.2Fe0.92Ti0.08O3/0.7%Nb−SrTiO3 has a wider current−voltage hysteresis and a larger resistance difference than Bi0.8La0.2FeO3/0.7%Nb−SrTiO3. In the interface of Bi0.8La0.2Fe0.92Ti0.08O3/0.7%Nb−SrTiO3, the ratio of high to low resistance is 103 and 105 times, at 300 K and 10 K, respectively. The voltage pulses can switch the resistance to vary in the 2 states. The transport mechanisms show that a trap−controlled space-charge-limited current induces current-voltage hysteresis and resistance switching. The current of Bi0.8La0.2Fe0.92Ti0.08O3/0.7%Nb−SrTiO3 decays with the Curie–Von Schweidler law.
|
Keywords:
75.30.Cr
73.40.Cg
77.55.Nv
|
|
Received: 10 October 2010
Published: 29 May 2011
|
|
PACS: |
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
|
|
|
[1] Smolenskii G A and Chupis I 1982 Sov. Phys. Usp. 25 475
[2] Yang S Y, Zhan Q, Yang P L, Cruz M P, Chu Y H, Ramesh R, Wu Y R, Singh J, Tian W and Schlom D G 2007 Appl. Phys. Lett. 91 022909
[3] Yang H, Luo H M, Wang H, Usov I O, Suvorova N A, Jain M, Feldmann D M, Dowden P C, DePaula R F and Jia Q X 2008 Appl. Phys. Lett. 92 102113
[4] Das S R, Choudhary R N P, Bhattacharya P, Katiyar R S, Dutta P, Manivannan A and Seehra M S 2007 J. Appl. Phys. 101 034104
Wang Y, Nan C 2006 Appl. Phys. Lett. 89 052903
[5] Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y, Liu J E and Jiang Y J 2010 Chin. Phys. B 19 037802
[6] Simoes A Z, Garcia F G and Riccardi C D 2009 Mater. Chem. Phys. 116 305
[7] Singh V R, Garg A and Agrawal D C 2008 Appl. Phys. Lett. 92 152905
[8] Zheng C D, Zhang D M, Liu X M, Liu C J, Yu C R and Yu J 2009 J. Inorg. Mater. 24 745
[9] Murari N M, Thomas R, Melgarejo R E and Pavunny S P 2009 J. Appl. Phys. 106 014103
[10] Mark P and Helfrich W 1962 J. Appl. Phys. 33 205
[11] Scott J F, Araujo C A, Melnick B M, Mcmillan L D and Zuleeg R 1991 J. Appl. Phys. 70 382
[12] Qi X, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
[13] Dissado L A and Hill R M 1981 J. Mater. Sci. 16 1410
[14] Kliem H, 1989 IEEE Trans. Electr. Insul. 24 185
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|