Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 064602    DOI: 10.1088/0256-307X/28/6/064602
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Void Growth Model Considering the Bauschinger Effect and Its Application to Spall Fracture
CHEN Qian-Yi1,2, LIU Kai-Xin1,2**
1LTCS and Department of Mechanics & Aerospace Engineering, College of Engineering, Peking University, Beijing 100871
2Center for Applied Physics and Technology, Peking University, Beijing 100871
Cite this article:   
CHEN Qian-Yi, LIU Kai-Xin 2011 Chin. Phys. Lett. 28 064602
Download: PDF(651KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A void growth model considering the Bauschinger effect (BE) is proposed for ductile materials sustaining impact loading. Numerical simulations of two high-velocity impact problems are carried out by our newly developed Eulerian programs. The proposed model is tested by a plate impact problem and a qualitative agreement with the experiment is obtained. Then a more complicated problem, a plate impacted by a spherical projectile at a velocity of 6.0 km/s, is simulated. The numerical results are in better accordance with the experimental data when the BE is considered. The proposed model reveals that the BE has an obvious effect on the spall process.
Keywords: 46.15.-x      62.20.mm      64.30.Ef     
Received: 10 March 2011      Published: 29 May 2011
PACS:  46.15.-x (Computational methods in continuum mechanics)  
  62.20.mm (Fracture)  
  64.30.Ef (Equations of state of pure metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/064602       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/064602
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Qian-Yi
LIU Kai-Xin
[1] Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V and Utkin A V 2003 Spall Fracture (New York: Springer)
[2] Johnson J N 1981 J. Appl. Phys. 52 2812
[3] Carroll M M and Holt A C 1972 J. Appl. Phys. 43 1626
[4] Perzyna P 1986 Int. J. Solids Struct. 22 797
[5] Eftis J, Nemes J A and Randles P W 1991 Int. J. Plasticity 7 15
[6] Cortes R 1992 Int. J. Solids Struct. 29 1339
[7] Eftis J, Carrasco C and Osegueda R A 2003 Int. J. Plasticity 19 1321
[8] Khan A S and Huang S 1995 Continuum Theory of Plasticity (New York: John Wiley)
[9] Thakur A, NematNasser S and Vecchio K S 1996 Acta Mater. 44 2797
[10] Hermann B, Favorsky V, Landau A, Shvarts D and Zaretsky E B 2003 J. Phys. IV 110 269
[11] Chen Q Y, Wang J T and Liu K X 2010 J. Comput. Phys. 229 7503
[12] Johnson G R and Cook W H 1983 7th Int. Symp. Ballistics (Hague, Netherlands)
[13] Wang J T, Liu K X and Zhang D L 2009 Comput. Fluids 38 544
[14] Antoun T H, Seaman L and Curran D R 1998 Dynamic Failure of Materials: Compilation of Russian spall data (technical report) vol 2
[15] Horz F, Bernhard R P and See T H 1995 The 1995 International Conference on Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena ed Murr L E, Staudhammer K P and Meyers M A (Amsterdam: Elsevier Science)
[16] 2005 AUTODYN material library
Related articles from Frontiers Journals
[1] LI Ying-Hua,CHANG Jing-Zhen LI Xue-Mei,ZHANG Lin**. Multiphase Equation of States of the Solid and Liquid Phases of Al and Ta[J]. Chin. Phys. Lett., 2012, 29(4): 064602
[2] WANG Bao-Tian, ZHANG Ping** . Ideal Strengths and Bonding Properties of PuO2 under Tension[J]. Chin. Phys. Lett., 2011, 28(4): 064602
[3] RONG Ji-Li, WANG Xi, CAO Mao-Sheng, XU Tian-Fu. Dynamic Fracture Toughness and Failure Mechanisms of ZnO Whiskers Secondary Reinforced Composites[J]. Chin. Phys. Lett., 2010, 27(8): 064602
[4] RONG Ji-Li, WANG Xi, CAO Mao-Sheng, WANG Da-Wei, ZHOU Wei, XU Tian-Fu. Dynamic Tensile Behavior and Fracture Mechanism of Polymer Composites Embedded with Tetraneedle-Shaped ZnO Nanowhiskers[J]. Chin. Phys. Lett., 2010, 27(6): 064602
[5] BAI Li-Gang, LIU Jing. Equation of State and Elastic Constants of Compressed fcc Cu[J]. Chin. Phys. Lett., 2010, 27(3): 064602
[6] LIU Zhao-Long, HU Hai-Yun, FAN Tian-You, XING Xiu-San. Nucleation of Micro Crack for Brittle Fracture in Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(10): 064602
[7] TANG Ling-Yun, LIU Lei, LIU Jing, XIAO Wan-Sheng, LI Yan-Chun, LI Xiao-Dong, BI Yan. Equation of State of Tantalum up to 133GPa[J]. Chin. Phys. Lett., 2010, 27(1): 064602
[8] SHAN Li, CHENG Ming, LIU Kai-Xin, LIU Wei-Fu, CHEN Shi-Yang. New Discrete Element Models for Three-Dimensional Impact Problems[J]. Chin. Phys. Lett., 2009, 26(12): 064602
Viewed
Full text


Abstract