Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060207    DOI: 10.1088/0256-307X/28/6/060207
GENERAL |
Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation
WU Jian-Ping
Institute of Electronic Technology, Information Engineering University, Zhengzhou 450004
Cite this article:   
WU Jian-Ping 2011 Chin. Phys. Lett. 28 060207
Download: PDF(755KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Resorting to the Hirota bilinear form, a bilinear Bäcklund transformation (BT) is obtained for a variable-coefficient Kadomtsev–Petviashvili equation. As applications, based on the resulting bilinear BT, single-soliton solutions and two-soliton solutions together with their soliton characteristics are presented for the equation. Furthermore, starting from the bilinear BT, a Lax pair and a new variable-coefficient (2+1)-dimensional nonlinear evolution equation is derived.
Keywords: 02.30.Jr      05.45.Yv     
Received: 18 February 2011      Published: 29 May 2011
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060207       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jian-Ping
[1] Rogers C and Shadwick W E 1982 Bäcklund Transformations and Their Applications (New York: Academic)
[2] Hirota R 2004 The Direct Methods in Soliton Theory (Cambridge: Cambridge University)
[3] Hu X B 1991 J. Phys. A: Math. Gen. 24 5489
[4] Wahlquist H D and Estabrook F B 1973 Phys. Rev. Lett. 23 1386
[5] Z Z Yao et al 2008 Commun. Theor. Phys. 49 1125
[6] Guo B L 1995 Nonlinear Evolution Equations (Shanghai: Sanghai Science Technology Education Publishing House)
[7] Zhang C et al 2009 Commun. Theor. Phys. 52 468
[8] Ma W X 2005 Nonlinear Analysis 63 e2461
[9] Gardener C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060207
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 060207
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 060207
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 060207
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060207
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 060207
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060207
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 060207
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060207
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060207
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 060207
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 060207
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 060207
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060207
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 060207
Viewed
Full text


Abstract