Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 039701    DOI: 10.1088/0256-307X/28/3/039701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc
HE Liang, HUANG Chang-Yin, WANG Ding-Xiong**
School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
HE Liang, HUANG Chang-Yin, WANG Ding-Xiong 2011 Chin. Phys. Lett. 28 039701
Download: PDF(449KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A constraint to black hole (BH) accretion has previously been derived for the inner edge fixed at the innermost stable circular orbit (ISCO) and the innermost bound circular orbit (IBCO). This constraint is referred to as the mass-radius (MR) relation in this study, and the validity of the MR relation is discussed for different cases. It is shown that the product of the BH mass and the inner edge radius decreases monotonically in the accretion process for the inner edge located between IBCO and ISCO. In addition, we discuss the validity of the MR relation by considering the magnetic coupling (MC) effects of a Kerr BH with its surrounding disc. Although theoretically the product of the BH mass and the radius of ISCO increases (decreases) with time for a BH spin greater (less) than some critical value in the MC process, this relation is approximately valid for an Eddington accretion rate persisting for a rather long time, such as more than 106 years. Finally, we discuss the possible application of the MR relation to astrophysics.
Keywords: 97.60.Lf      98.62.Mw      98.62.Js     
Received: 22 November 2010      Published: 28 February 2011
PACS:  97.60.Lf (Black holes)  
  98.62.Mw (Infall, accretion, and accretion disks)  
  98.62.Js (Galactic nuclei (including black holes), circumnuclear matter, and bulges)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/039701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/039701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Liang
HUANG Chang-Yin
WANG Ding-Xiong
[1] Bardeen J M 1970 Nature 226 64
[2] Thorne K S 1974 Astrophys. J. 191 507
[3] Abramowicz M A and Lasota J P 1980 Acta Astron. 30 35
[4] Moderski R and Sikora M 1996 Astron. Astronphys. Suppl. 120 591
[5] Wang D X 1999 Astron. & Astronphys. 347 1069
[6] Page D N and Thorne K S 1974 Astrophys. J. 191 499
[7] Blandford R D 1999 ASP Conf. Ser. 160 Astrophys. Discs: An EC Summer School ed Sellwood J A and Goodman J (San Francisco: ASP) p 265
[8] Li L X and Paczynski B 2000 Astrophys. J. 534 L197
[9] Wang D X, Xiao K and Lei W H 2002 Mon. Not. Roy. Astron. Soc. 335 655
[10] Blandford R D and Znajek R L 1977 Mon. Not. Roy. Astron. Soc. 179 433
[11] Moderski R, Sikora M and Lasota J P 1997 Relativistic Jets in AGNs eds Ostrowski M, Sikora M, Madejski G and Belgelman M (Krakow) p 110
[12] Blandford R D 1990 Active Galactic Nuclei ed Courvoisier T J L and Mayor M Saas-Fee Advanced Course 20 (Berlin: Springer) p 161
[13] Wilson A S and Colbert E J M 1995 Astrophys. J. 438 62
[14] Wang D X, Ma R Y, Lei W H and Yao G Z 2003 Astrophys. J. 595 109
Related articles from Frontiers Journals
[1] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 039701
[2] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 039701
[3] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 039701
[4] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 039701
[5] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 039701
[6] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 039701
[7] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 039701
[8] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 039701
[9] CHEN Liang, **, BAI Jin-Ming, . Is Low-Frequency-Peaked BL Lac Object OJ 287 a TeV Emitter?[J]. Chin. Phys. Lett., 2010, 27(11): 039701
[10] WEI Ying-Chun, A. Taani**, PAN Yuan-Yue, WANG Jing, CAI Yan, LIU Gao-Chao, LUO A-Li, ZHANG Hong-Bo, ZHAO Yong-Heng . Neutron Star Motion in the Disk Galaxy[J]. Chin. Phys. Lett., 2010, 27(11): 039701
[11] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 039701
[12] JIAO Cheng-Liang, LU Ju-Fu. Slim Discs with Varying Accretion Rates[J]. Chin. Phys. Lett., 2009, 26(4): 039701
[13] ZHANG Yu, , WANG Chun-Yan, GUI Yuan-Xing, WANG Fu-Jun, YU Fei. Dirac Quasinormal Modes of a Schwarzschild Black Hole surrounded by Free Static Spherically Symmetric Quintessence[J]. Chin. Phys. Lett., 2009, 26(3): 039701
[14] YANG Jian, ZHAO Zheng, TIAN Gui-Hua, LIU Wen-Biao. Tortoise Coordinates and Hawking Radiation in a Dynamical Spherically Symmetric Spacetime[J]. Chin. Phys. Lett., 2009, 26(12): 039701
[15] LIN Kai, YANG Shu-Zheng. Fermions Tunneling from Non-Stationary Dilaton-Maxwell Black Hole via General Tortoise Coordinate Transformation[J]. Chin. Phys. Lett., 2009, 26(10): 039701
Viewed
Full text


Abstract