CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Structure and Optical Properties of Layered Ternary Carbide Ti3AlC2 |
JIANG Jiu-Xing1,2**, JIN Shan1, WANG Zhen-Hua1, TAN Chang-Long1
|
1Department of Applied Physics, Harbin University of Science and Technology, Harbin 150080
2School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
|
|
Cite this article: |
JIANG Jiu-Xing, JIN Shan, WANG Zhen-Hua et al 2011 Chin. Phys. Lett. 28 037101 |
|
|
Abstract The electronic structure and optical properties of the layered ternary compound Ti3AlC2 are studied by the plane-wave psedudopotential method within the generalized gradient approximation. The results show that Ti3AlC2 is an electronic conductor. The total density of states at the Fermi level mainly originates from Ti d states. Moreover, it is found that the reflectivity is nonselective in the visible region. In particular, the reflectivity is high in the ultraviolet region, indicating that Ti3AlC2 can be a promising candidate for use as an anti-ultraviolet ray coating material. Furthermore, the mechanism of the optical properties is investigated on the basis of the electronic structure.
|
Keywords:
71.15.Mb
81.40.Tv
71.20.-b
|
|
Received: 30 July 2010
Published: 28 February 2011
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
81.40.Tv
|
(Optical and dielectric properties related to treatment conditions)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
|
|
[1] Baroum M W, Brodkin D and El-Raghy T 1997 Scripta Materialia 36 535
[2] Barsoum M W 2000 Prog. Solid. State. Chem. 28 201
[3] Barsoum M W, Zhen Z, Kalidindi S R, Radovic M and Murugaiah A 2003 Nature Mater. 2 107
[4] Sun Z M, Music D, Ahuja R, Li S and Schneider J M 2004 Phys. Rev. B 70 092102
[5] Grechnev A, Li S, Ahuja R, Eriksson O, Jansson U and Wilhelmsson O 2004 Appl. Phys. Lett. 85 3071
[6] Zhou Y C and Sun Z M 1999 Mater. Res. Innovations 3 171
[7] Palmquist J P, Li S, Persson P O A, Emmerlich J, Wilhelmsson O, Hogberg H, Katsnelson M I, Johansson B, Ahuja R, Eriksson O, Hultman L and Jansson U 2004 Phys. Rev. B 70 165401
[8] Hogberg H, Hultman L, Emmerlich J, Joelsson T, Eklund P, Molina-Aldareguia J M, Palmquist J P, Wilhelmsson O and Jansson U 2005 Surf. Coat. Technol. 193 6
[9] Hogberg H, Eklund P, Emmerlich J, Birch J and Hultman L 2005 J. Mater. Res. 20 779
[10] Eklund P, Palmquist J P, Howing J, Trinh D H, El-Raghy T, Hogberg H and Hultman L 2007 Acta Mater. 55 4723
[11] Zhou Y C, Wang X H, Sun Z M and Chen S Q 2001 J. Mater. Chem. 11 2335
[12] Ellis D E and Painter G S 1970 Phys. Rev. B 2 87
[13] Wang J Y, Wang J M, Zhou Y C, Lin Z J and Hu C F 2008 Scripta Materialia 58 1043
[14] Min X M, Ren Y 2007 Journal of Wuhan University of Technology-Mater. Sci. Ed. 27 30
[15] Segall M D, Lndan J D P, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[16] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[17] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[18] Etzkorn J, Ade M, Kotzott D, Kleczek M and Hillebrecht H 2009 J. Solid State Chem. 182 995
[19] Manoun B, Amini S, Gupta S, Saxena S K and Barsoum M W 2007 J. Phys.: Condens. Matter 19 456218
[20] Manoun B, Gulve R P, Saxena S K, Gupta S, Barsoum M W and Zha C S 2006 Phys. Rev. B 73 024110
[21] Li S, Ahuja R, Barsoum M W, Jena P and Johansson B 2008 Appl. Phys. Lett. 92 221907
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|