CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Growth of Zinc Blende GaAs/AlGaAs Radial Heterostructure Nanowires by a Two-Temperature Process |
GUO Jing-Wei**, HUANG Hui, REN Xiao-Min, YAN Xin, CAI Shi-Wei, GUO Xin, HUANG Yong-Qing, WANG Qi, ZHANG Xia, WANG Wei
|
Key Laboratory of Information Photonics and Optical Communications (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
GUO Jing-Wei, HUANG Hui, REN Xiao-Min et al 2011 Chin. Phys. Lett. 28 036101 |
|
|
Abstract Zinc blende structure GaAs/AlGaAs core-multishell nanowires (NWs) are grown on a GaAs(111) B substrate by a two-temperature process using an Au-catalyzed vapor-liquid-solid mechanism and metal organic chemical vapor deposition, respectively. Defect-free radial heterostructure NWs are formed. It can be concluded that the NWs are grown with the main contributions from the direct impingement of the precursors onto the alloy droplets and little from adatom diffusion. The results indicate that the droplet acts as a catalyst rather than an adatom collector. The photoluminescence spectra reveal that the grown NWs have much higher optical efficiency than bare GaAs NWs.
|
Keywords:
61.46.Hk
68.37.-d
68.37.Lp
|
|
Received: 13 September 2010
Published: 28 February 2011
|
|
PACS: |
61.46.Hk
|
(Nanocrystals)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
|
|
|
[1] Patolsky F, Timko B P, Yu G, Fang Y, Greytak A B, Zheng G and Lieber C M 2006 Science 313 1100
[2] Bryllert T, Wernersson L E, Froberg L E and Samuelson L 2006 Electron Device Lett. 27 323
[3] Gradecak S, Qian F, Li Y, Park H G and Lieber C M 2005 Appl. Phys. Lett. 87 173111
[4] Huang H, Ren X M, Ye X, Guo J W, Wang Q, Yang Y S, Cai S W and Huang Y Q 2010 Nano Lett. 10 64
[5] Ye X, Huang H, Ren X M, Yang Y S, Guo J W, Huang Y Q and Wang Q 2010 Chin. Phys. Lett. 27 046101
[6] Noborisaka J, Motohisa J, Hara S and Fukui T 2005 Appl. Phys. Lett. 87 093109
[7] Tomilka K, Kobayashi Y, Motohisa J, Hara S and Fukui T 2009 Nanotechnology 20 145302
[8] Moewe M, Chuang L C, crankshaw S, Chase C and Chang C 2008 Appl. Phys. Lett. 93 023116
[9] Ouattara L, Mikkelsen A, Skold N, Eriksson J, Knaapen T, Cavar E, Seifert W, Samuelson L and Lundgren E 2007 Nano Lett. 7 2859
[10] Wu Z H, Sun M, Mei X Y and Ruda H E 2004 Appl. Phys. Lett. 85 657
[11] Tambe M J, Lim S K, Smith M J, Allard L F and Gradecak S 2008 Appl. Phys. Lett. 93 151917
[12] Tateno K, Gotoh H and Watanabe Y 2004 Appl. Phys. Lett. 85 1808
[13] Chen C, Shehata S, Fradin C, Lapierre R, Couteau C and Weihs G 2007 Nano Lett. 7 2584
[14] Chen C, Braidy N, Couteau C, Fradin C, Weihs G and Lapierre R 2008 Nano Lett. 8 495
[15] Soci C, Bao X-Y, Aplin D P R and Wang D 2008 Nano Lett. 8 4275
[16] Dubrovskii V G, Sibirev N V, Cirlin G E, Soshnikov I P, Chen W H, Larde R, Cadel E, Pareige P, Xu T, Grandidier B, Nys J P, Stievenard D, Moewe M, Chuang L C and Chang C 2009 Phys. Rev. B 79 205316
[17] Plante M C and LaPierre R R 2008 J. Cryst. Growth 310 356
[18] Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C and Ustinov V M 2008 Phys. Rev. E 77 031606
[19] Harmand J C, Patriarche G, Laperne N P, Combe M-N M, Travers L and Glas F 2005 Appl. Phys. Lett. 87 203101
[20] Persson A I, Ohlsson B J, Jeppesen S and Samuelson L 2004 J. Cryst. Growth 272 167
[21] Bauer J, Gottschalch V, Paetzelt H, Wagner G, Fuhrmann B and Leipner H S 2007 J. Cryst. Growth 298 625
[22] Glas F, Harmand J and Patriarche G 2007 Phys. Rev. Lett. 99 146101
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|