Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 036101    DOI: 10.1088/0256-307X/28/3/036101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Growth of Zinc Blende GaAs/AlGaAs Radial Heterostructure Nanowires by a Two-Temperature Process
GUO Jing-Wei**, HUANG Hui, REN Xiao-Min, YAN Xin, CAI Shi-Wei, GUO Xin, HUANG Yong-Qing, WANG Qi, ZHANG Xia, WANG Wei
Key Laboratory of Information Photonics and Optical Communications (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
GUO Jing-Wei, HUANG Hui, REN Xiao-Min et al  2011 Chin. Phys. Lett. 28 036101
Download: PDF(799KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Zinc blende structure GaAs/AlGaAs core-multishell nanowires (NWs) are grown on a GaAs(111) B substrate by a two-temperature process using an Au-catalyzed vapor-liquid-solid mechanism and metal organic chemical vapor deposition, respectively. Defect-free radial heterostructure NWs are formed. It can be concluded that the NWs are grown with the main contributions from the direct impingement of the precursors onto the alloy droplets and little from adatom diffusion. The results indicate that the droplet acts as a catalyst rather than an adatom collector. The photoluminescence spectra reveal that the grown NWs have much higher optical efficiency than bare GaAs NWs.
Keywords: 61.46.Hk      68.37.-d      68.37.Lp     
Received: 13 September 2010      Published: 28 February 2011
PACS:  61.46.Hk (Nanocrystals)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.37.Lp (Transmission electron microscopy (TEM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/036101       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/036101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Jing-Wei
HUANG Hui
REN Xiao-Min
YAN Xin
CAI Shi-Wei
GUO Xin
HUANG Yong-Qing
WANG Qi
ZHANG Xia
WANG Wei
[1] Patolsky F, Timko B P, Yu G, Fang Y, Greytak A B, Zheng G and Lieber C M 2006 Science 313 1100
[2] Bryllert T, Wernersson L E, Froberg L E and Samuelson L 2006 Electron Device Lett. 27 323
[3] Gradecak S, Qian F, Li Y, Park H G and Lieber C M 2005 Appl. Phys. Lett. 87 173111
[4] Huang H, Ren X M, Ye X, Guo J W, Wang Q, Yang Y S, Cai S W and Huang Y Q 2010 Nano Lett. 10 64
[5] Ye X, Huang H, Ren X M, Yang Y S, Guo J W, Huang Y Q and Wang Q 2010 Chin. Phys. Lett. 27 046101
[6] Noborisaka J, Motohisa J, Hara S and Fukui T 2005 Appl. Phys. Lett. 87 093109
[7] Tomilka K, Kobayashi Y, Motohisa J, Hara S and Fukui T 2009 Nanotechnology 20 145302
[8] Moewe M, Chuang L C, crankshaw S, Chase C and Chang C 2008 Appl. Phys. Lett. 93 023116
[9] Ouattara L, Mikkelsen A, Skold N, Eriksson J, Knaapen T, Cavar E, Seifert W, Samuelson L and Lundgren E 2007 Nano Lett. 7 2859
[10] Wu Z H, Sun M, Mei X Y and Ruda H E 2004 Appl. Phys. Lett. 85 657
[11] Tambe M J, Lim S K, Smith M J, Allard L F and Gradecak S 2008 Appl. Phys. Lett. 93 151917
[12] Tateno K, Gotoh H and Watanabe Y 2004 Appl. Phys. Lett. 85 1808
[13] Chen C, Shehata S, Fradin C, Lapierre R, Couteau C and Weihs G 2007 Nano Lett. 7 2584
[14] Chen C, Braidy N, Couteau C, Fradin C, Weihs G and Lapierre R 2008 Nano Lett. 8 495
[15] Soci C, Bao X-Y, Aplin D P R and Wang D 2008 Nano Lett. 8 4275
[16] Dubrovskii V G, Sibirev N V, Cirlin G E, Soshnikov I P, Chen W H, Larde R, Cadel E, Pareige P, Xu T, Grandidier B, Nys J P, Stievenard D, Moewe M, Chuang L C and Chang C 2009 Phys. Rev. B 79 205316
[17] Plante M C and LaPierre R R 2008 J. Cryst. Growth 310 356
[18] Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C and Ustinov V M 2008 Phys. Rev. E 77 031606
[19] Harmand J C, Patriarche G, Laperne N P, Combe M-N M, Travers L and Glas F 2005 Appl. Phys. Lett. 87 203101
[20] Persson A I, Ohlsson B J, Jeppesen S and Samuelson L 2004 J. Cryst. Growth 272 167
[21] Bauer J, Gottschalch V, Paetzelt H, Wagner G, Fuhrmann B and Leipner H S 2007 J. Cryst. Growth 298 625
[22] Glas F, Harmand J and Patriarche G 2007 Phys. Rev. Lett. 99 146101
Related articles from Frontiers Journals
[1] FAN Xiao-Hong,XU Bin**,NIU Zhen,ZHAI Tong-Guang,TIAN Bin. Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(4): 036101
[2] DING Tao, SONG Jun-Qiang, CAI Qun. Effect of Multiple Depositions and Annealing Treatments on the Erbium Silicide Nanoislands Self-Assembled on Si(001) Substrates[J]. Chin. Phys. Lett., 2012, 29(3): 036101
[3] GUO Xiao-Song, LU Bing-An, XIE Er-Qing** . Growth of Graphene Nanoribbons and Carbon Onions from Polymer[J]. Chin. Phys. Lett., 2011, 28(7): 036101
[4] DING Tao, SONG Jun-Qiang, LI Juan, CAI Qun** . Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface[J]. Chin. Phys. Lett., 2011, 28(6): 036101
[5] Murtaza Saleem**, Saadat A. Siddiqi, Shahid Atiq, M. Sabieh Anwar . Structural and Magnetic Studies of Zn0.95Co0.05O and Zn0.90Co0.05Al0.05O[J]. Chin. Phys. Lett., 2011, 28(11): 036101
[6] JI Guo-Jun, SHI Zhi-Ming. AFM and XPS Study of Glass Surface Coated with Titania Nanofilms by Sol-Gel Method[J]. Chin. Phys. Lett., 2010, 27(9): 036101
[7] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 036101
[8] LIU Li-Hu, GU Jian-Jun, , LI Hai-Tao, , CAI Ning, SUN Hui-Yuan,. Synthesis and Characteristics of Electrodeposited CoxZn1-x Nanorods[J]. Chin. Phys. Lett., 2010, 27(6): 036101
[9] YE Xian, HUANG Hui, REN Xiao-Min, YANG Yi-Su, GUO Jing-Wei, HUANG Yong-Qing, WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(4): 036101
[10] JIANG Zhi-Ang, CHEN Jiang-Tao, WANG Jun, ZHUO Ren-Fu, YAN De, ZHANG Fei, YAN Peng-Xun. CuO Nanosheets Synthesized by Hydrothermal Process[J]. Chin. Phys. Lett., 2009, 26(8): 036101
[11] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. Nonvolatile Memory Characteristics with Embedded High Density Ruthenium Nanocrystals[J]. Chin. Phys. Lett., 2009, 26(5): 036101
[12] LI Wei-Long, JIA Rui, LIU Ming, CHEN Chen, XIE Chang-Qing, ZHU Chen-Xin, LI Hao-Feng, ZHANG Pei-Wen, YE Tian-Chun. Fabrication and Characterization of Si Nanocrystals Synthesized by Electron Beam Evaporation of Si and SiO2 Mixture[J]. Chin. Phys. Lett., 2009, 26(4): 036101
[13] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application[J]. Chin. Phys. Lett., 2009, 26(4): 036101
[14] LI Ping-Yun, CAO Zhen-Hua, ZHANG Xi-Yan, WU Xiao-Lei, HUANG Yi-Neng, MENG Xiang-Kang. Curie Transition of NC Nickel by Mechanical Spectroscopy and Magnetization Study[J]. Chin. Phys. Lett., 2009, 26(3): 036101
[15] DENG Jiang-Xia, YAN Shi-Shen, MEI Liang-Mo, J. P. Liu, B. Altuncevahir, V. Chakka, WANG Yong, ZHANG Ze, SUN Xiang-Cheng, J. Lian, K. Sun. Magnetic Properties and Antiferromagnetic Coupling in Inhomogeneous Zn1-xFexO Magnetic Semiconductor[J]. Chin. Phys. Lett., 2009, 26(2): 036101
Viewed
Full text


Abstract