Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 034701    DOI: 10.1088/0256-307X/28/3/034701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tortuosity of Flow Paths through a Sierpinski Carpet
LI Jian-Hua1, YU Bo-Ming2**
1Biomedical Materials and Engineering Research Center, Wuhan University of Technology, Wuhan 430070
2School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
LI Jian-Hua, YU Bo-Ming 2011 Chin. Phys. Lett. 28 034701
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Sierpinski carpet is an exactly self-similar fractal, which is often used to simulate fractal porous media. A simple recursive model for the tortuosity of flow path in Sierpinski carpet is derived based on the self-similarity of the carpet. The proposed model is related to the stage of the carpet, and there is no empirical constant in this model. The model predictions are compared with those from available correlations by both numerical and experimental methods as well as analysis. Good agreement is found between the present model predictions and those from the available correlations. The present model may have the potential in analysis of transport properties in self-similar fractals.
Keywords: 47.56.+r      47.15.-x      47.60.Dx     
Received: 29 March 2010      Published: 28 February 2011
PACS:  47.56.+r (Flows through porous media)  
  47.15.-x (Laminar flows)  
  47.60.Dx (Flows in ducts and channels)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/034701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/034701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jian-Hua
YU Bo-Ming
[1] Bear J 1972 Dynamics of Fluids in Porous Media (New York: Elsevier)
[2] Dullien F A L 1979 Porous Media, Fluid Transport and Pore Structure (San Diego: Academic)
[3] Koponen A, Kataja M and Timonen J 1996 Phys. Rev. E 54 406
[4] Feng S D, Ren R C and Ji Z Z 2002 Chin. Phys. Lett. 19 79
[5] Xu Y S and Wu F M 2002 Chin. Phys. Lett. 19 1835
[6] Ba X W, Zhang S W, Wang H J, Wang S J and Han Y H 2002 Chin. Phys. Lett. 19 1135
[7] Tian J P and Yao K L 2003 Chin. Phys. Lett. 20 83
[8] Liu Z F, Wang X H, Mao P and Wu Q S 2003 Chin. Phys. Lett. 20 1969
[9] Tian J P and Yao K L 2003 Chin. Phys. Lett. 20 253
[10] Zhang L C, Zhang X X and He J C 2003 Chin. Phys. Lett. 20 858
[11] Yu B M and Li J H 2004 Chin. Phys. Lett. 21 117
[12] Yun M J, Yu B M, Zhang B and Huang M T 2005 Chin. Phys. Lett. 22 1464
[13] Yun M J, Yu B M, Xu P and Wu J S 2006 Can. J. Chem. Eng. 84 301
[14] Delgado J M P Q 2006 Can. J. Chem. Eng. 84 651
[15] Lanfrey P Y, Kuzeljevic Z V and Dudukovic M P 2010 Chem. Eng. Sci. 65 1891
[16] Denn M M 1980 Process Fluid Mechanics (NJ: Prentice Hall) p 35
[17] Wang C T and Smith J M 1983 AIChE J. 29 132
[18] Comiti J and Renaud M 1989 Chem. Engng. Sci. 44 1539
[19] Ma Y T, Yu B M, Zhang D M and Zou M Q 2003 J. Phys. D: Appl. Phys. 36 2157
[20] Ma Y T, Yu B M, Zhang D M and Zou M Q 2004 J. Appl. Phys. 95 6426
[21] Tang Y N, Yu B M, Hu Y F, Cai J C, Feng Y J and Xu P 2007 J. Phys. D: Appl. Phys. 40 5377
[22] Yu B M and Yao K L 1988 Z. Phys. B: Condens. Matter 70 209
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 034701
[2] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 034701
[3] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 034701
[4] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 034701
[5] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 034701
[6] ZHAO Si-Cheng, LIU Qiu-Sheng**, NGUYEN-THI Henri, BILLIA Bernard . Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2011, 28(2): 034701
[7] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 034701
[8] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 034701
[9] ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri, BILLIA Bernard. Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane[J]. Chin. Phys. Lett., 2010, 27(2): 034701
[10] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 034701
[11] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 034701
[12] WU Jing-Chun, QIN Sheng-Gao, WANG Yang. Derivation of the Convective Dispersion Equation with Adsorption by Markov Random Ways[J]. Chin. Phys. Lett., 2009, 26(8): 034701
[13] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 034701
[14] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 034701
[15] ZENG Li, ZUO Guang-Hong, GONG Xiao-Jing, LU Hang-Jun, WANGChun-Lei, WU Ke-Fei, WAN Rong-Zheng,. Water and Ion Permeation through Electrically Charged Nanopore[J]. Chin. Phys. Lett., 2008, 25(4): 034701
Viewed
Full text


Abstract