GENERAL |
|
|
|
|
Quantum Secure Direct Communication with Five-Qubit Entangled State |
LIN Song1,2**, GAO Fei3, LIU Xiao-Fen1,2
|
1School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007
2Key Lab of Network Security and Cryptography, Fujian Normal University, Fuzhou 350007
3State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
LIN Song, GAO Fei, LIU Xiao-Fen 2011 Chin. Phys. Lett. 28 030302 |
|
|
Abstract Recently, a genuine five-qubit entangled state has been achieved by Brown et al. [J. Phys. A 38 (2005) 1119]. Later it was indicated that this state can be used for quantum teleportation and quantum state sharing. Here we build a quantum secure direct communication protocol with this state, and prove that it is secure in ideal conditions. In the protocol, the sender performs unitary transformations to encode a secret message on his/her particles and sends them to the receiver. The receiver then performs projective determinate measurement to decode the secret message directly. Furthermore, this protocol utilizes superdense coding to achieve a high intrinsic efficiency and source capacity.
|
Keywords:
03.67.Dd
03.67.Hk
|
|
Received: 22 November 2010
Published: 28 February 2011
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
|
|
|
[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE) p 175
[2] Vernam G and Am J 1926 Inst. Electron. Eng. 55 109
[3] Long G and Liu X 2002 Phys. Rev. A 65 032302
[4] Beige A et al 2002 Acta Phys. Pol. A 101 357
[5] Bostroem K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[6] Deng F G et al 2003 Phys. Rev. A 68 042317
[7] Zhu A D et al 2006 Phys. Rev. A 73 022338
[8] Liu D et al 2010 Chin. Phys. Lett. 27 050306
[9] Wang C et al 2005 Opt. Commun. 253 15
[10] Jin X R et al I 2006 Phys. Lett. A 354 67
[11] Wang J et al 2006 Opt. Commun. 266 732
[12] Cao H J and Song H S 2006 Chin. Phys. Lett. 23 290
[13] Chen X B et al 2008 Int. J. Quantum. Inform. 6 899
[14] Wang G Y et al 2006 Chin. Phys. Lett. 23 2658
[15] Cao W et al 2010 Sci. Chin. G: Phys. Mech. Astron. 53 1271
[16] Lin S et al 2008 Phys. Rev. A 78 064304
[17] Li J and Wang C 2010 Chin. Phys. Lett. 27 110303
[18] Liu X et al 2010 Chin. Phys. Lett. 27 120303
[19] Gao F et al 2008 Sci. Chin. G: Phys. Mech. Astron. 51 559
[20] Zhang S et al 2009 Chin. Sci. Bull. 54 1863
[21] XU F et al 2009 Chin. Sci. Bull. 54 2991
[22] Brown I D K et al 2005 J. Phys. A 38 1119
[23] Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 77 032321
[24] Hou K et al 2010 Opt. Commun. 283 1961
[25] Stinespring W F 1955 Proc. Am. Math. Soc. 6 211
[26] Cai Q Y 2003 Phys. Rev. Lett. 91 109801
[27] Gisin N et al 2002 Rev. Mod. Phys. 74 145
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|