Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 030302    DOI: 10.1088/0256-307X/28/3/030302
GENERAL |
Quantum Secure Direct Communication with Five-Qubit Entangled State
LIN Song1,2**, GAO Fei3, LIU Xiao-Fen1,2
1School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007
2Key Lab of Network Security and Cryptography, Fujian Normal University, Fuzhou 350007
3State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
LIN Song, GAO Fei, LIU Xiao-Fen 2011 Chin. Phys. Lett. 28 030302
Download: PDF(418KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, a genuine five-qubit entangled state has been achieved by Brown et al. [J. Phys. A 38 (2005) 1119]. Later it was indicated that this state can be used for quantum teleportation and quantum state sharing. Here we build a quantum secure direct communication protocol with this state, and prove that it is secure in ideal conditions. In the protocol, the sender performs unitary transformations to encode a secret message on his/her particles and sends them to the receiver. The receiver then performs projective determinate measurement to decode the secret message directly. Furthermore, this protocol utilizes superdense coding to achieve a high intrinsic efficiency and source capacity.
Keywords: 03.67.Dd      03.67.Hk     
Received: 22 November 2010      Published: 28 February 2011
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/030302       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/030302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIN Song
GAO Fei
LIU Xiao-Fen
[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE) p 175
[2] Vernam G and Am J 1926 Inst. Electron. Eng. 55 109
[3] Long G and Liu X 2002 Phys. Rev. A 65 032302
[4] Beige A et al 2002 Acta Phys. Pol. A 101 357
[5] Bostroem K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[6] Deng F G et al 2003 Phys. Rev. A 68 042317
[7] Zhu A D et al 2006 Phys. Rev. A 73 022338
[8] Liu D et al 2010 Chin. Phys. Lett. 27 050306
[9] Wang C et al 2005 Opt. Commun. 253 15
[10] Jin X R et al I 2006 Phys. Lett. A 354 67
[11] Wang J et al 2006 Opt. Commun. 266 732
[12] Cao H J and Song H S 2006 Chin. Phys. Lett. 23 290
[13] Chen X B et al 2008 Int. J. Quantum. Inform. 6 899
[14] Wang G Y et al 2006 Chin. Phys. Lett. 23 2658
[15] Cao W et al 2010 Sci. Chin. G: Phys. Mech. Astron. 53 1271
[16] Lin S et al 2008 Phys. Rev. A 78 064304
[17] Li J and Wang C 2010 Chin. Phys. Lett. 27 110303
[18] Liu X et al 2010 Chin. Phys. Lett. 27 120303
[19] Gao F et al 2008 Sci. Chin. G: Phys. Mech. Astron. 51 559
[20] Zhang S et al 2009 Chin. Sci. Bull. 54 1863
[21] XU F et al 2009 Chin. Sci. Bull. 54 2991
[22] Brown I D K et al 2005 J. Phys. A 38 1119
[23] Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 77 032321
[24] Hou K et al 2010 Opt. Commun. 283 1961
[25] Stinespring W F 1955 Proc. Am. Math. Soc. 6 211
[26] Cai Q Y 2003 Phys. Rev. Lett. 91 109801
[27] Gisin N et al 2002 Rev. Mod. Phys. 74 145
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 030302
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 030302
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 030302
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 030302
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 030302
[6] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 030302
[7] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 030302
[8] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 030302
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 030302
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 030302
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 030302
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 030302
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 030302
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 030302
[15] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 030302
Viewed
Full text


Abstract