FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Cooperative Quantum Cutting in Er3+/Yb3+ Codoped Oxyfluoride Glass Ceramics |
LUO Shi-Qiang, ZHAO Li-Juan**, HU Nan, ZHANG Ming, ZHANG Pan, WANG Ya-Zhou, YU Hua**
|
1Key Laboratory for Weak Light Nonlinear Photonics (Ministry of Education), Nankai University, Tianjin 300457
2College of Physics, Nankai University, Tianjin 300071
|
|
Cite this article: |
LUO Shi-Qiang, ZHAO Li-Juan, HU Nan et al 2011 Chin. Phys. Lett. 28 034207 |
|
|
Abstract Oxyfluoride glass ceramics doped with Er3+/Yb3+ was synthesized. Rare earth ions are doped into fluoride nanocrystals according to x-ray diffractive patterns. The enhanced red emission of Er3+/Yb3+ in the fluoride nanocrystals, excited by xenon lamp at 449 nm, is investigated and analyzed by cooperative quantum cutting mode. The cross relaxation appears from 4F5/2 →4F9/2 to 4I15/2 →4I13/2 because of the nearer distance of rare earth ions and the larger absorption section of 4I15/2 →4I13/2 in the quantum cutting. It results in two emissions of 4F9/2 →4I15/2 and 4I13/2 →4I15/2. This implies that a 449 nm photon could dissolve into two photons with wavelength 665 nm and 1530 nm. This could be an effective way to obtain 1530 nm emission for optical communication.
|
Keywords:
42.70.-a
81.05.Pj
78.67.Bf
|
|
Received: 17 September 2010
Published: 28 February 2011
|
|
PACS: |
42.70.-a
|
(Optical materials)
|
|
81.05.Pj
|
(Glass-based composites, vitroceramics)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
|
|
|
[1] Wang Y H and Ohwaki J 1993 Appl. Phys. Lett. 63 3268
[2] Tick P A, Borrelli N F, Cornelius L K and Newhouse M A 1995 J. Appl. Phys. 78 6367
[3] Beggioraa M, Reaney I M and Islam M S 2003 Appl. Phys. Lett. 83 467
[4] Tikhomirov V K, Mortier M, Gredin P, Patriarche G, Görller-WalrandC and Moshchalkov V V 2008 Opt. Express 15 14544
[5] Qiao X S, Fan X P, Wang J and Wang M Q 2006 J. Appl. Phys. 99 074302
[6] Mendez-Ramos J, Tikhomirov V K, Rodriguez V D and Furniss D 2007 Alloy. Compd. 440 328
[7] Miyakawa T and Dexter D L 1970 Phys. Rev. B 1 2961
[8] Zhang G Y, Zhao L J, Hou Y B, Xu J J and Shang M R 2000 Chin. Sci. Bull. 45 882
[9] Li Y B, Hou Y B, Zhao S L, Yi L X and Xu X R 2000 Chin. Phys. Lett. 17 515
[10] Qiao X S, Fan X P, Wang M Q, Adam J L and Zhang X H 2006 J. Phys.: Condens. Matter. 18 6937
[11] Yu H, Zhao L J, Liang Q, Meng J, Yu X Y, Tang B Q, Tang L Q andXu J J 2005 Chin. Phys. Lett. 22 1500
[12] Riseberg L A andMoos H W 1968 Phys. Rev. B 174 429
[13] Wegh R T, Donker H, Oskam K D and Meijerink A 1999 Science 283 663
[14] Ende B M, Aarts L and Meijerink A 2009 Adv. Mater. 21 3073
[15] Liu B, Zhao L, Sun J, Yu H, Song J and Xu J J 2007 Chin. Phys. Lett. 24 527
[16] Chen D Q, Wang Y S, Yu Y L, Huang P and Weng F Y 2008 Opt. Lett. 33 1884
[17] Chen X B, Wu J G, Xu X L, Zhang Y Z and Sawanobori N 2009 Opt. Lett. 34 887
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|