CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Photoluminescence of Nominally Undoped Heavy n-Type ZnO Nanowires |
TANG Hai-Ping1,2, HE Hai-Ping3**, LIU Chao3, KWON Bong-Jun1, YE Zhi-Zhen3, LEE Soonil1, PARK Ji-Yong1***
|
1Division of Energy Systems Research, Ajou University, Suwon, 443-749, Korea
2Baoji University of Arts and Sciences, Baoji 721007
3State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
TANG Hai-Ping, HE Hai-Ping, LIU Chao et al 2011 Chin. Phys. Lett. 28 027803 |
|
|
Abstract We report the identification of a donor band and the correlation between n-type conductivity and the green emission in ZnO nanowires. Temperature-dependent photoluminescence is used to investigate nominally undoped ZnO nanowires with high n-type conductivity. Within the whole temperature range, a dominant free-to-bound transition with a donor band of about 150 meV below the conduction band minimum is observed. The nanowires show very strong green emission, which is quenched with activation energy of about 220 meV. The correlation between the high n-type conductivity and the strong green emission is discussed in detail, and we suggest that they may have different origins.
|
Keywords:
78.55.Et
78.67.Uh
71.55.Gs
|
|
Received: 24 November 2010
Published: 30 January 2011
|
|
|
|
|
|
[1] Wang Z L 2004 J. Phys. Condens. Matter 16 R829
[2] Shalish I, Temkin H and Narayanamurti V 2004 Phys. Rev. B 69 245401
[3] van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Phys. Chem. B 104 1715
[4] Foreman J V, Li J Y, Peng H Y, Choi S, Everitt H O and Liu J 2006 Nano Lett. 6 1126
[5] Djurisic A B, Leung Y H, Choy W C H, Cheah K W and Chan W K 2004 Appl. Phys. Lett. 84 2635
[6] He H P, Ye Z Z, Lin S S, Zhao B H, Huang J Y and Tang H P 2008 J. Phys. Chem. C 112 14262
[7] Kim D S, Richters J P, Scholz R, Voss T and Zacharias M 2010 Appl. Phys. Lett. 96 123110
[8] Makino T, Segawa Y, Yoshida S, Tsukazaki A, Ohtomo A, Kawasaki M and Koinuma H 2005 J. Appl. Phys. 98 093520
[9] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[10] Janotti A and van der Walle C G 2005 Appl. Phys. Lett. 87 122102
[11] Oh Y M, Lee K M, Park K H, Kim Y, Ahn Y H, Park J Y and Lee S 2007 Nano Lett. 7 3681
[12] Klingshirn C, Hauschild R, Fallert J and Kalt H 2007 Phys. Rev. B 75 115203
[13] Meyer B K, Alves H, Hofmann D M, Kriegseis W, Forster D, Bertram F, Chresten J, Hoffmann A, Strabburg M, Dworzak M, Haboeck U and Rodina A V 2004 Phys. Status Solidi B 241 231
[14] Zhang B P, Binh N T, Segawa Y, Kashiwaba Y and Haga K 2004 Appl. Phys. Lett. 84 586
[15] von Wenckstern H, Weinhold S, Biehne G, Pickenhain R, Schmidt H, Hochmuth H and Grundmann M 2005 Donor Levels in ZnO, Advances in Solid State Physics (Berlin: Springer) vol 45 p 263
[16] Voss T, Bekeny C, Gutowski J, Tena-Zaera R, Elias J, Lévy-Clément C, Mora-Seró I and Bisquert J 2009 J. Appl. Phys. 106 054304
[17] Leroux M, Grandjean N, Beaumont B, Nataf G, Semond F, Massies J and Gibart P 1999 J. Appl. Phys. 86 3721
[18] Reshchikov M A, Shahedipour F, Korotkov R Y, Wessels B W and Ulmer M P 2000 J. Appl. Phys. 87 3351
[19] Garces N Y, Wang L, Bai L, Giles N C, Halliburton L E and Cantwell G 2002 Appl. Phys. Lett. 81 622
[20] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B and Cantwell G 2002 Appl. Phys. Lett. 81 1830
[21] Zeng K C, Lin J Y, Jiang H X and Yang W 1999 Appl. Phys. Lett. 74 3821
[22] Zhang Y Z, He H P, Jin Y Z, Zhao B H, Ye Z Z and Tang H P 2008 J. Appl. Phys. 104 103529
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|