Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 029701    DOI: 10.1088/0256-307X/28/2/029701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field
CAO Guang-Tao**, WANG Yong-Jiu
Institute of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
CAO Guang-Tao, WANG Yong-Jiu 2011 Chin. Phys. Lett. 28 029701
Download: PDF(390KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We calculate the interference phase of the mass neutrinos in high energy limit propagating in radial and nonradial directions along the geodesic by solving Hamilton-Jacobi equation, and discuss the contributions of cosmological constant λ and angular momentum L to the phase shift in Schwarzschild de Sitter spacetime.
Keywords: 97.60.Lf      04.60.Kz      04.70.Dy     
Received: 09 August 2010      Published: 30 January 2011
PACS:  97.60.Lf (Black holes)  
  04.60.Kz (Lower dimensional models; minisuperspace models)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/029701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/029701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Guang-Tao
WANG Yong-Jiu
[1] Fukuda Y et al 1998 Phys. Rev. Lett. 81 1158
[2] Pontecorvo B 1957 Zh. Eksp. Teor. Fiz. 33 549
[3] Fornengo N, Giunti C, Kim C W and Song J 1999 Nucl. Phys. B 70 264
[4] Giunit C, Kim C W and Lee U W 1957 Phys. Rev. D 44 3635
[5] Grossman Y and Lapkin H J 1997 Phys. Rev. D 55 2760
[6] Giunit C, Kim C W and Lee U W 1998 Phys. Lett. B 421 237
[7] Cardall C Y 2000 Phys. Rev. D 61 073006
[8] Kayser B 1981 Phys. Rev. D 24 110
[9] Stodolsky L 1979 Gen. Rel. Grav. 11 391
[10] Fornengo N, Giunti C, Kim C W and Song J 1997 Phys. Rev. D 56 1895
[11] Zhang C M and Beesham A 2001 Gen. Rel. Grav. 33 1011
[12] Huang X J, Li Z J and Wang Y J 2006 Chin. Phys. 15 229
[13] Huang X J and Wang Y J 2004 Chin. Phys. 13 1588
[14] Huang X J and Wang Y J 2003 Commun. Theor. Phys. 40 742
[15] Chen X and Wang Y J 2009 Chin. Phys. B 13 1707
[16] Cao G T and Wang Y J 2010 Acta Phys. Sin. 59 749 (in Chinese)
[17] Ren J, Zhang C M 2010 Class. Quant. Grav. 27 065011
[18] Zhang C M and Beesham A 2003 Int. J. Mod. Phys. D 12 727
[19] Pereira J G and Zhang C M 2000 Gen. Rel. Grav. 32 1633
[20] Ren J and Geng J P 2010 Commun. Theor. Phys. 53 665
[21] Wudka J 2002 Phys. Rev. D 64 065009
[22] Lambiase G, Papini G, Punzi R and Scarpetta G arXiv:gr-qc/0503027v1
[23] Godunov S I and Pastukhov G S arxiv:0906.5556 [hep-ph]
[24] Maiwa H and Naka S arxiv:hep-ph/0401143
[25] Leo S D, Ducati G and Rotelli P 2000 Mod. Phys. Lett. A 15 2057
[26] Piriz D, Roy M and Wudka J 1996 Phys. Rev. D 54 1587
[27] Alsing P M, Evans J C and Nandi K K 2001 Gen. Rel. Grav. 33 1459
[28] Wang Y J 2004 Gravitation and Cosmology (Changsha: Hunan Normal University Press) p 258 (in Chinese)
[29] Landau L D amd Lifshitz E M 2003 The Classical Theory of Fields (Butterworth-Heineman Ltd.) p 306
[30] Cardall C Y and Fuller G M 1997 Phys. Rev. D 55 7960
[31] Bhattacharya T, Habib S and Mottola E 1999 Phys. Rev. D 59 067301
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 029701
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 029701
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 029701
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 029701
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 029701
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 029701
[7] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 029701
[8] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 029701
[9] XIONG Hua-Hui**, ZHU Jian-Yang*** . Effect of the Inverse Volume Modification in Loop Quantum Cosmology[J]. Chin. Phys. Lett., 2011, 28(3): 029701
[10] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 029701
[11] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 029701
[12] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 029701
[13] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 029701
[14] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 029701
[15] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 029701
Viewed
Full text


Abstract