Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020504    DOI: 10.1088/0256-307X/28/2/020504
GENERAL |
Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing
LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian
College of Physics and Technology, Guangxi Normal University, Guilin 541004
Cite this article:   
LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning et al  2011 Chin. Phys. Lett. 28 020504
Download: PDF(1462KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Unidirectional linear error feedback coupling of two excitable medium systems displaying spiral waves is considered. The spiral wave in the response system is thus subjected to a spiral wave forcing. We find that the unidirectional feedback coupling can lead to richer behaviour than the mutual coupling. The spiral wave dynamics in the response system depends on the coupling strength and frequency mismatch. When the coupling strength is small, the feedback coupling induces the drift or meander of the forced spiral wave. When the coupling strength is large enough, the feedback coupling may lead to the transition from spiral wave to anti-target or target-like wave. The generation of anti-target wave in coupled excitable media is observed for the first time. Furthermore, when the coupling strength is strong, the synchronization between two subsystems can be established.
Keywords: 05.10.-a      05.45.-a      82.40.CK     
Received: 14 September 2010      Published: 30 January 2011
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020504       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Guang-Zhao
CHEN Yong-Qi
TANG Guo-Ning
LIU Jun-Xian
[1] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Zaikin A N and Zhabotinsky A M 1970 Nature 225 535
[3] Zhang H, Hu B B, Li B W and Duan Y S 2007 Chin. Phys. Lett. 24 1618
[4] Yu L C, Ma J, Zhang G Y and Chen Y 2008 Chin. Phys. Lett. 25 2706
[5] Jakubith S, Rotermund H H, Engel W, Oertzen A von and Ertl G 1990 Phys. Rev. Lett. 65 3013
[6] Bär M and Eiswirth M 1993 Phys. Rev. E 48 R1635
[7] Aranson I S, L Kramer and Weber A 1993 Phys. Rev. E 47 03231
[8] Li G, Ouyang Q, V Petrov and Swinney H L 1996 Phys. Rev. Lett. 77 2105
[9] Vanag V K and Epstein I R 2001 Science 294 835
[10] Berenstein I, Muñuzuri A P, Yang L, Dolnik M, Zhabotinsky A M and Epstein I R 2008 Phys. Rev. E 78 025101
[11] Hendrey M, Nam K, Guzdar P and Ott E 2000 Phys. Rev. E 62 7627
[12] Yuan X J, Shao X, Liao H M and Ouyang Q 2009 Chin. Phys. Lett. 26 024702
[13] Luo J M and Zhan M 2008 Phys. Lett. A 372 2415
[14] Stich M and Mikhailov A S 2006 Physica D 215 38
[15] Wang H L and Ouyang Q 2004 Chin. Phys. Lett. 21 1437
[16] Kazantsev V B, Nekorkin V I, Artyuhin D V and Velarde M G 2000 Phys. Rev. E 63 016212
[17] Hildebrand M, Cui J, Mihaliuk E, Wang J and Showalter K 2003 Phys. Rev. E 68 026205
[18] Ma J, Ying H P, Liu Y and Li S R 2009 Chin. Phys. B 18 98
[19] Zhang G, Zhang W and Liu Z R 2010 Chin. Phys. Lett. 27 030504
[20] Zhang G Y, Ma J, Yu L C and Chen Y 2008 Chin. Phys. B 17 4107
[21] Yang H J and Yang J Z 2007 Phys. Rev. E 76 016206
[22] Li M S, Lu Q S, Duan L X and Wang Q Y 2008 Chin. Phys. Lett. 25 2806
[23] Zhang L, Zhang S, Tong H, Lei D and Hu B 2009 Phys. Rev. E 79 056213
[24] Ma J, Jia Y, Tang J and Yang L J 2008 Chin. Phys. Lett. 25 4325
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[7] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[11] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 020504
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020504
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 020504
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 020504
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020504
Viewed
Full text


Abstract