Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020307    DOI: 10.1088/0256-307X/28/2/020307
GENERAL |
Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field
CAI Jiang-Tao1,2, ABLIZ Ahmad1**, BAI Yan-Kui3, JIN Guang-Sheng4
1School of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054
2State Key laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
3College of Physical Science and Information Engineering, Hebei Normal University, Shijiazhuang, Hebei 050016
4School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
CAI Jiang-Tao, ABLIZ Ahmad, BAI Yan-Kui et al  2011 Chin. Phys. Lett. 28 020307
Download: PDF(1022KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of different components of the Dzyaloshinskii–Moriya (DM) anisotropic antisymmetric interaction on optimal dense coding with a two-qubit Heisenberg XXZ chain in the presence and in the absence of external magnetic fields. The anisotropic coupling parameter Δ, isotropic coupling parameter J, and the DM interaction parameters are found to be effective for optimal dense coding, while the magnetic field turns out to be destructive. Moreover, the results show that the case of antiferromagnetic (AFM) is more ideal for optimal dense coding than the case of ferromagnetic (FM) in general. In the case of AFM, by comparison of the two cases with the same fixed x− and z−component parameters of DM interaction (Dx and Dz), the appropriate model for optimal dense coding is indicated for the different value intervals of Δ. Comparison of the effects of Dz and Dx on optimal dense coding is made and their dominant regions are clarified.
Keywords: 03.67.-a      03.65.Ud      75.10.Jm     
Received: 19 October 2010      Published: 30 January 2011
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020307       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jiang-Tao
ABLIZ Ahmad
BAI Yan-Kui
JIN Guang-Sheng
[1] Neilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[4] Bennett C H et al 1992 Phys. Rev. Lett. 69 2881
[5] Bareno A and Ekert A K 1995 J. Mod. Opt. 42 1253
[6] Braunstein S L et al 2000 Phys. Rev. A 61 042302
[7] Bose S et al 2000 J. Mod. Opt. 47 291
[8] Qiu L et al 2009 Physica Scripta 79 015005
[9] Zhang G F 2009 Physica Scripta 79 015001
[10] Mattle K et al 1996 Phys. Rev. Lett. 76 4656
[11] Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
[12] Holevo A S 1973 Probl. Inf. Transm. 9 177
[13] Nielson M A 2001 Phys. Rev. A 63 022114
[14] Wang X G 2001 Phys. Rev. A 64 012313
[15] Kamta G L et al 2002 Phys. Rev. Lett. 88 107901
[16] O'Connor K M et al 2001 Phys. Rev. A 63 052302
[17] Abliz A et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215503
[18] Zhang G F et al 2005 Opt. Commun. 245 457
[19] Cai J T et al 2010 Opt. Commun. 283 4415
[20] Li D C et al 2008 J. Phys: Condens. Matter 20 325229
[21] Kargarian M et al 2009 Phys. Rev. A 79 042319
[22] Ma X S 2008 Opt. Commun. 281 484
[23] Qiu L, Wang A M and Ma X S 2007 Physica A 383 325
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 020307
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 020307
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020307
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 020307
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020307
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 020307
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 020307
[8] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 020307
[9] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020307
[10] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 020307
[11] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 020307
[12] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 020307
[13] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 020307
[14] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 020307
[15] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 020307
Viewed
Full text


Abstract