Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020301    DOI: 10.1088/0256-307X/28/2/020301
GENERAL |
Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant
ZHA Xin-Wei**, MA Gang-Long
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121
Cite this article:   
ZHA Xin-Wei, MA Gang-Long 2011 Chin. Phys. Lett. 28 020301
Download: PDF(345KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is a recent observation that entanglement classification for qubits is closely related to stochastic local operations and classical communication (SLOCC) invariants. Verstraete et al.[Phys. Rev. A 65 (2002) 052112] showed that for pure states of four qubits there are nine different degenerate SLOCC entanglement classes. Li et al.[Phys. Rev. A 76 (2007) 052311] showed that there are at least 28 distinct true SLOCC entanglement classes for four qubits by means of the SLOCC invariant and semi-invariant. We give 16 different entanglement classes for four qubits by means of basic SLOCC invariants.
Keywords: 03.67.Hk      03.65.Ud      03.65.Fd     
Received: 17 June 2010      Published: 30 January 2011
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020301       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHA Xin-Wei
MA Gang-Long
[1] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[2] Verstraete F, Dehaene J, De Moor B and Verschelde H 2002 Phys. Rev. A 65 052112
[3] Miyake A 2003 Phys. Rev. A 67 012108
[4] Osterloh A and Siewer J 2005 Phys. Rev. A 72 012337
[5] Osterloh A and Siewert J 2006 Int. J. Quantum Inf. 4 531
[6] Luque J G and Thibon J Y 2003 Phys. Rev. A 67 042303
[7] Li D F, Li X R, Huang H T and Li X X 2007 Phys. Rev. A 76 052311
[8] Ren X J, Jiang W, Zhou X, Zhou Z W and Guo G C 2008 Phys. Rev. A 78 012343
[9] Zha X W and Ren K F 2008 Phys. Rev. A 77 014306
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 020301
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 020301
[3] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 020301
[4] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020301
[5] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 020301
[6] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020301
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 020301
[8] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 020301
[9] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 020301
[10] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020301
[11] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 020301
[12] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 020301
[13] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 020301
[14] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 020301
[15] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 020301
Viewed
Full text


Abstract