GENERAL |
|
|
|
|
Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution |
Sudha1,2**, B. G. Divyamani1, A. R. Usha Devi3,4
|
1Department of Physics, Kuvempu University, Shankaraghatta, Shimoga-577 451, India
2DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK.
3Department of Physics, Bangalore University, Bangalore-560 056, India
4Inspire Institute Inc., McLean, VA 22101, USA.
|
|
Cite this article: |
Sudha, B. G. Divyamani, A. R. Usha Devi 2011 Chin. Phys. Lett. 28 020305 |
|
|
Abstract Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange symmetry of initially symmetric multiqubit states. Specifically we show that among 4−qubit states obeying exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time evolution with Ising Hamiltonian. Attributing the loss of symmetry of the initially symmetric states to rotational asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all N−qubit states (N≥5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.
|
Keywords:
03.65.Ud
75.10.Jm
42.50.Dv
|
|
Received: 17 June 2010
Published: 30 January 2011
|
|
PACS: |
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] Sackett C A et al 2000 Nature 404 256
[2] Roos C F et al 2004 Science 304 1478
[3] Leibfried D et al 2005 Nature (London) 438 639
[4] Sorensen A et al 2001 Nature 409 63
[5] Usha Devi A R et al 2007 Phys. Rev. Lett. 98 060501
[6] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[7] Wineland D J et al 1994 Phys. Rev. A 50 67
[8] Agarwal G S and Puri R R 1990 Phys. Rev. A 41 3782
[9] Sorensen A and Molmer K 1999 Phys. Rev. Lett 83 2274
[10] Wang X et al 2001 Phys. Rev. A 64 053815
[11] Wang X 2001 J. Opt. B: Quantum Semiclass. Opt. 3 93
[12] Usha Devi A R et al 2003 Quant. Inf. Proc. 2 207
[13] Usha Devi A R et al 2003 J. Phys. A: Math. Gen. 36 5333
[14] Ulam-Orgikh D and Kitagawa M 2001 Phys. Rev. A 64 052106
[15] Wang X and Molmer K 2002 Eur. Phys. J. D 18 385
[16] Wang X and Sanders B C 2003 Phys. Rev. A 68 012101
[17] Brennen G K et al 1999 Phys. Rev. Lett. 82 1060
[18] Jaksch D et al 1999 Phys. Rev. Lett. 82 1975
[19] UshaDevi A R, Uma M S, Prabhu R and Sudha 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S740
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|