Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 128901    DOI: 10.1088/0256-307X/27/12/128901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Unifying Modularity in Networks
HAO Jun-Jun1, CAI Shui-Ming2, HE Qin-Bin1,3, LIU Zeng-Rong1,2**
1Institute of System Biology, Shanghai University, Shanghai 200444
2Department of Mathematics, Shanghai University, Shanghai 200444
3Department of Mathematics, Taizhou University, Linhai 317000
Cite this article:   
HAO Jun-Jun, CAI Shui-Ming, HE Qin-Bin et al  2010 Chin. Phys. Lett. 27 128901
Download: PDF(498KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new modularity criterion in complex networks, called the unifying modularity q which is independent of the number of partitions. It is shown that, for a given network, the relationship between the upper limit of Q and the number of the partitions, k, is sup(Qk)=(k−1)/k. Since the range of Q for each partition number is inconsistent, we try to extend the concept Q to unifying modularity q, which is independent of the number of partitions. Subsequently, we indicate that it is more accurately to determine the number of partitions by using unifying modularity q than Q.
Keywords: 89.75.Hc      87.23.Ge     
Received: 13 June 2010      Published: 23 November 2010
PACS:  89.75.Hc (Networks and genealogical trees)  
  87.23.Ge (Dynamics of social systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/128901       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/128901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAO Jun-Jun
CAI Shui-Ming
HE Qin-Bin
LIU Zeng-Rong
[1] Colizza V, Barrat A, Barthélemy M and Vespignani A 2006 Proc. Natl. Acad. Sci. USA 103 2015
[2] Kim Y, Son S W and Jeong H 2010 Phys. Rev. E 81 016013
[3] Kernighan B W and Lin S 1970 Bell Syst. Tech. J. 49 291
[4] Fiedler M, 1973 Czech. Math. J. 23(98) 298
[5] Pothen A, Simon H and Liou K P 1990 SIAM J. Matrix Anal. A 11(3) 430
[6] Pons P and Latapy M 2005 Comput. Inform. Sci. 3733 284
[7] Palla G, Derenyi I, Farkas I et al 2005 Nature 435(7043) 814
[8] Palla G, Farkas I, Pollner P et al 2007 New J. Phys. 9(186)
[9] Newman M E J 2004 Phys. Rev. E 69(6) 066133
[10] Girvan M and Newman M E J 2001 Proc. Natl. Acad. Sci. USA 99 7821
[11] Tyler J, Wilkinson D and Huberman B 2003 Proceedings of the First International Conference on Communities and Technologies (Dordrecht: Kluwer) p 81
[12] Radicchi F, Castellano C, Cecconi F et al 2004 Eur. Phys. J. B 101 2658
[13] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113
[14] Clauset A, Newman M E J and Moore C 2004 Phys. Rev. E 70 066111
[15] Duch J and Arenas A 2005 Phys. Rev. E 72 027104
[16] Guimerá R and Amaral L A N 2005 Nature 433 895
[17] Medus A, Acuna G and Dorso C O 2005 Physica A 358 593
[18] Reichardt J and Bornholdt S 2006 Phys. Rev. E 74 016110
[19] Newman M E J 2006 Phys. Rev. E 74 036104
[20] Muff S, Rao F and Caflisch A 2005 Phys. Rev. E 72 056107
[21] Li Z, Zhang S, Wang R S, Zhang X S and Chen L 2008 Phys. Rev. E 77 03610
[22] Zachary W W 1977 J. Anth. Res. 33 452
[23] Lusseau D, Schneider K, Boisseau O J, Haase P et al 2003 Behav. Ecol. Sociobiol. 54 396
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 128901
[2] ZHANG Feng-Li,ZHANG Mei**. Emergence and Decline of Scientific Paradigms in a Two-Group System[J]. Chin. Phys. Lett., 2012, 29(4): 128901
[3] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 128901
[4] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 128901
[5] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[6] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[7] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[8] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[9] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 128901
[10] DENG Li-Li, TANG Wan-Sheng**, ZHANG Jian-Xiong . Coevolution of Structure and Strategy Promoting Fairness in the Ultimatum Game[J]. Chin. Phys. Lett., 2011, 28(7): 128901
[11] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 128901
[12] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 128901
[13] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 128901
[14] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 128901
[15] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Attack Robustness of Scale-Free Networks Based on Grey Information[J]. Chin. Phys. Lett., 2011, 28(5): 128901
Viewed
Full text


Abstract