CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fabrication and Characteristics of AlInN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric |
MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai, HAO Yao, MA Xiao-Hua, WANG Chong, LIU Hong-Xia, XU Sheng-Rui, YANG Lin-An, BI Zhi-Wei, LIANG Xiao-Zhen, ZHANG Jin-Feng, KUANG Xian-Wei
|
Key Lab of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071 |
|
Cite this article: |
MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai et al 2010 Chin. Phys. Lett. 27 128501 |
|
|
Abstract Al0.85In0.15N/AlN/GaN metal−oxide-semiconductor high electron mobility transistors (MOS-HEMTs) employing a 3-nm ultra-thin atomic-layer deposited (ALD) Al2O3 gate dielectric layer are reported. Devices with 0.6 μm gate lengths exhibit an improved maximum drain current density of 1227 mA/mm at a gate bias of 3 V, a peak transconductance of 328 mS/mm, a cutoff frequency fT of 16 GHz, a maximum frequency of oscillation fmax of 45 GHz, as well as significant gate leakage suppression in both reverse and forward directions, compared with the conventional Al0.85In0.15N/AlN/GaN HEMT. Negligible C–V hysteresis, together with a smaller pinch−off voltage shift, is observed, demonstrating few bulk traps in the dielectric and high quality of the Al2O3/AlInN interface. It is most notable that not only the transconductance profile of the MOS-HEMT is almost the same as that of the conventional HEMT with a negative shift, but also the peak transconductance of the MOS-HEMT is increased slightly. It is an exciting improvement in the transconductance performance.
|
Keywords:
85.30.Tv
73.40.Qv
|
|
Received: 20 August 2010
Published: 23 November 2010
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
|
|
|
[1] Gadanecz A, Bläsing J, Dadgar A, Hums C and Krost A 2007 Appl. Phys. Lett. 90 221906
[2] Kuzmik J, Kostopoulos A, Konstantinidis G, Carlin J F, Georgakilas A and Pogany D 2006 IEEE Trans. Electron. Devices 53 422
[3] Joh J and del Alamo J A 2008 IEEE Electron. Device Lett. 29 287
[4] Rivera C and Muñoz E 2009 Appl. Phys. Lett. 94 053501
[5] Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron. Devices 54 2589
[6] Chikhaoui W, Bluet J M, Poisson M A, Sarazin N, Dua C and Bru-Chevallier C 2010 Appl. Phys. Lett. 96 072107
[7] Khan M A, Hu X, Sumin G, Lunev A, Yang J, Gaska R and Ahur M S 2000 IEEE Electron. Device Lett. 21 63
[8] Simon G, Hu X, Ilinskaya N, Zhang J, Tarakji A, Kumar A, Yang J, Khan M A, Gaska R and Shur M S 2001 IEEE Electron. Device Lett. 22 53
[9] Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M 2005 Appl. Phys. Lett. 86 063501
[10] Medjdoub F, Sarazin N, Tordjman M, Magis M, di Forte-Poisson M A, Knez M, Delos E, Gaquiere C, Delage S L and Kohn E 2007 Electron. Lett. 43 691
[11] Kuzmik J, Pozzovivo G, Abermann S, Carlin J, Gonschorek M, Feltin E, Grandjean N, Bertagnolli E, Strasser G and Pogany D 2008 IEEE Trans. Electron. Devices 55 937
[12] Dong X, Li Z H, Li Z Y, Zhou J J, Li L, Li Y, Zhang L, Xu X J, Xu X and Han C L 2010 Chin. Phys. Lett. 27 037102
[13] Liu C, Chor E F and Tan L S 2006 Appl. Phys. Lett. 88 173504
[14] Levinshtein M E, Ivanov P A, Khan M A, Simin G, Zhang J, Hu X and Yang J 2003 Semicond. Sci. Technol. 18 666
[15] Kordoš P, Gregušová D, Stoklas R, Čičo K and Novák J 2007 Appl. Phys. Lett. 90 123513
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|