Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 120201    DOI: 10.1088/0256-307X/27/12/120201
GENERAL |
Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun
XIE Yin-Li, JIA Li-Qun
School of Science, Jiangnan University, Wuxi 214122
Cite this article:   
XIE Yin-Li, JIA Li-Qun 2010 Chin. Phys. Lett. 27 120201
Download: PDF(369KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Special Lie–Mei symmetry and conserved quantities for Appell equations expressed by Appell functions in a holonomic mechanical system are investigated. On the basis of the Appell equation in a holonomic system, the definition and the criterion of special Lie–Mei symmetry of Appell equations expressed by Appell functions are given. The expressions of the determining equation of special Lie–Mei symmetry of Appell equations expressed by Appell functions, Hojman conserved quantity and Mei conserved quantity deduced from special Lie–Mei symmetry in a holonomic mechanical system are gained. An example is given to illustrate the application of the results.
Keywords: 02.20.Sv      11.30.-j      45.20.Jj     
Received: 17 July 2010      Published: 23 November 2010
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/120201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/120201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Yin-Li
JIA Li-Qun
[1] Appell P 1899 C. R. Acad. Sci. Paris 129 317
[2] Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) p 131 (in Chinese)
[3] Zhang J F 1989 Mech. Engin. 11 58 (in Chinese)
[4] Qiao Y F 1991 Acta Mech. Solid. Sin. 12 285 (in Chinese)
[5] Qiao Y F, Yue Q W, Ruan Z Q and Su B W 1991 J. Northeast Agr. Coll. 22 179 (in Chinese)
[6] Guo G P 1993 J. Zhejiang Norm. Univ. 16 (2) 31 (in Chinese)
[7] Guo G P 1997 J. Zhejiang Norm. Univ. 20 (4) 29 (in Chinese)
[8] Mei F X 2001 Chin. Phys. 10 177
[9] Li R J, Qiao Y F and Meng J 2002 Acta Phys. Sin. 51 1 (in Chinese)
[10] Guo G P 2002 J. Xinjiang Univ. 19 (1) 27 (in Chinese)
[11] Zhang Y Y, Jia L Q and Zheng S W 2007 J. Henan Norm. Univ. 35 (2) 77 (in Chinese)
[12] Jia L Q, Zhang Y Y and Zheng S W 2007 J. Yunnan Univ. 29 589 (in Chinese)
[13] Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese)
[14] Luo S K 2002 J. Changsha Univ. 16 (4) 1 (in Chinese)
[15] Jia L Q, Xie J F and Zheng S W 2008 Chin. Phys. B 17 17
[16] Jia L Q, Cui J C, Zhang Y Y and Luo S K 2009 Acta Phys. Sin. 58 0016 (in Chinese)
[17] Jia L Q, Zhang Y Y and Cui J C 2009 J. Yunnan Univ. 31 52 (in Chinese)
[18] Li Y C, Xia L L, Wang X M and Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese)
[19] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin. Phys. Lett. 26 030303
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 120201
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 120201
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 120201
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 120201
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 120201
[6] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 120201
[7] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 120201
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 120201
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 120201
[10] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 120201
[11] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 120201
[12] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 120201
[13] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 120201
[14] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 120201
[15] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 120201
Viewed
Full text


Abstract