Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1579-1582    DOI:
Original Articles |
Tunnelling Effect of Two Horizons from a Gibbons--Maeda Black Hole
REN Jun
School of Science, Hebei University of Technology, Tianjin 300130
Cite this article:   
REN Jun 2008 Chin. Phys. Lett. 25 1579-1582
Download: PDF(110KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the thermal characters of the inner horizon of a Gibbons--Maeda black hole. In order to satisfy the Nernst theorem of the third law, the entropy of the black hole with two horizons must depend not only on the area of the outer horizon but also on the area of the inner horizon. Then the temperature of the inner horizon is calculated. Lastly, the tunnelling effect including the inner horizon of a Gibbons--Maeda black hole is investigated. We also calculate the tunnelling rate of the outer horizon Γ+ and the inner horizon Γ-. The total tunnelling rate Γ should be the product of the rates of the outer and inner horizon, Γ=Γ+-. It is found that the total tunnelling rate is in agreement with the Parikh's standard result, Γ→exp(∆SBH), and there is no information loss.
Keywords: 04.70.Dy      04.70.-s     
Received: 08 January 2008      Published: 29 April 2008
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.70.-s (Physics of black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01579
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Jun
[1] Bekenstein J D 1973 Phys. Rev. D 7 2333
[2]{Hawking Hawking S W 1975 Commun. Math. Phys. 43199
[3] Unruh W G and Wald R W 1982 Phys. Rev. D 25942
[4] Frolov V P and Page D N 1993 Phys. Rev. Lett. 71 3902
[5] Wald R W 1994 Quantum Field Theory in CurvedSpace-Time and Black Hole Thermodynamics (Chicago: University of Chicago Press)
[6] Lee H, Kim S W and Kim W T 1996 Phys. Rev. D 54 6559
[7] Wald R W 1997 `The Nernst Theorem' and black holethermodynamics gr-qc/9704008
[8] Zhao Z 1999 Int. J. Theor. Phys. 38 1539
[9] Damour T and Ruffini R 1976 Phys. Rev. D 14332
[10] Wald R W 1984 General Relativity (Chicago andLondon: University of Chicago) p 330
[11] Parikh M K 2004 A Secret Tunnel Through the Horizonhep-th/0405160
[12] Parikh M K 2004 Energy conservation and Hawkingradiation hep-th/0402166
[13] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[14] Hemming S and Keski-Vakkuri E 2001 Phys. Rev. D 64 044006
[15] Medved A J M 2002 Phys. Rev. D 66 124009
[16] Zhang J Y and Zhao Z 2005 J. High Energy Phys.issue 10 Article No 055
[17] Zhang J Y and Zhao Z 2005 Nucl. Phys. B 725173.
[18] Zhang J Y and Zhao Z 2006 Phys. Lett. B 638 110
[19] Zhang J Y and Fan J H 2007 Phys. Lett. B 648133
[20] Gibbons G W and Maeda K 1988 Nucl. Phys. B 298 741
[21] Zhao Z 1981 Acta Phys. Sin. 30 1508 (inChinese)
[22] Ren J 2007 Int. J. Theor. Phys. 46 3109
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1579-1582
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 1579-1582
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 1579-1582
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 1579-1582
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 1579-1582
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 1579-1582
[7] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 1579-1582
[8] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 1579-1582
[9] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 1579-1582
[10] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 1579-1582
[11] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 1579-1582
[12] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 1579-1582
[13] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 1579-1582
[14] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 1579-1582
[15] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 1579-1582
Viewed
Full text


Abstract