Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 104201    DOI: 10.1088/0256-307X/27/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Mueller-Matrix-Based Differential Rotation Method for Precise Measurement of Fiber Birefringence Vector
LI Zheng-Yong, WU Chong-Qing, SHANG Chao, YU Xiang-Zhi
Institute of Optical Information, the Key Laboratory of Luminescence and Optical Information of Ministry of Education, Beijing Jiaotong University, Beijing 100044
Cite this article:   
LI Zheng-Yong, WU Chong-Qing, SHANG Chao et al  2010 Chin. Phys. Lett. 27 104201
Download: PDF(455KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The method of complete polar decomposition for arbitrary Mueller matrixes is introduced to analyze the birefringence vector induced in a fiber, and then based on the Mueller matrix (MM) method, three kinds of computation methods including the absolute, the relative, and the differential rotation methods are proposed and investigated in detail. A computer-controlled measure system is employed to measure the Mueller matrix and birefringence vector for a 2.5-km fiber system with length 5 mm under lateral press in complicated environment with much perturbation. Experimental results show that the differential rotation (DR) method is the optimal approach to achieve fiber birefringence vectors in a large dynamic range of lateral press on fibers in perturbed situations, which reaches the highest linearity of 0.9998 and average deviation below 2.5%. Further analyses demonstrate that the DR method is also available for accurate orientation of lateral press direction and the average deviation is about 1.1°.
Keywords: 42.25.Ja      42.81.Gs      42.81.Cn      42.81.Pa     
Received: 24 February 2010      Published: 26 September 2010
PACS:  42.25.Ja (Polarization)  
  42.81.Gs (Birefringence, polarization)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  42.81.Pa (Sensors, gyros)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/104201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zheng-Yong
WU Chong-Qing
SHANG Chao
YU Xiang-Zhi
[1] Klimov A, Romero J, Sánchez-Soto L, Messina A and Napoli A 2008 Phys. Rev. A 77 033853
[2] Luis A 2005 Phys. Rev. A 71 023810
[3] Mecozzi A 2008 Opt. Lett. 33 1315
[4] Han M, Wang Y and Wang A 2007 Opt. Lett. 32 2028
[5] Yang S S, Wu C Q, Li Z Y, Zhang R Y and Meng Q W 2008 Chin. Phys. Lett. 25 3304
[6] Rashleigh S C 1983 Opt. Lett. 8 336
[7] Kikuchi K and Okoshi T 1983 Opt. Lett. 8 122
[8] Okoshi T, Ryu S and Emura K 1981 Opt. Commun. 2 134
[9] Takada K, Noda J and Ulrich R 1985 Appl. Opt. 24 4387
[10] Kim B Y and Choi S S 1981 Opt. Lett. 6 578
[11] Li Z Y, Wu C Q, Dong H, Shum P, Tian C Y and Zhao S 2008 Opt. Express 16 3955
[12] Collett E 1993 Polarized Light: Fundamentals and Applications (New York: Marcel Dekker)
[13] Lu S Y and Chipman R A 1996 J. Opt. Soc. Am. A 13 1106
[14] Theocaris P and Gdoutos E 1979 Matrix Theory of Photoelasticity (New York: Springer)
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 104201
[2] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 104201
[3] WANG Ya-Ping,**,WU Chong-Qing,YAN Ping. Polarization Stability of a Double-Loop Interferometer Based on a Planar 3×3 Coupler[J]. Chin. Phys. Lett., 2012, 29(4): 104201
[4] HONG Ling-Fei**, ZHANG Chun-Xi, FENG Li-Shuang, YU Huai-Yong, LEI Ming. Frequency Modulation Induced by using the Linear Phase Modulation Method used in a Resonator Micro-optic Gyro[J]. Chin. Phys. Lett., 2012, 29(1): 104201
[5] CHEN Zhi-Yu, YAN Lian-Shan**, YI An-Lin, PAN Wei, LUO Bin . Simultaneous PMD Mitigation for Two Polarization Tributaries of a PDM Signal using only One All-Optical Regenerator[J]. Chin. Phys. Lett., 2011, 28(9): 104201
[6] SHANG Chao, WU Chong-Qing**, LI Zheng-Yong, YANG Shuang-Shou** . A New Distributed Measurement of Birefringence Vectors by P-OTDR Assisted by a High Speed Polarization Analyzer[J]. Chin. Phys. Lett., 2011, 28(9): 104201
[7] JING Lei, **, YAO Jian-Quan, . Single Mode Condition and Power Fraction of Air-Cladding Total Refractive Guided Porous Polymer Terahertz Fibers[J]. Chin. Phys. Lett., 2011, 28(8): 104201
[8] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 104201
[9] LUO Tao, GU Zheng-Tian** . A New Type of Absorbance Sensors Based on Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2011, 28(5): 104201
[10] DING Chao-Liang**, ZHAO Zhi-Guo, LI Xiao-Feng, PAN Liu-Zhan***, YUAN Xiao . Influence of Turbulent Atmosphere on Polarization Properties of Stochastic Electromagnetic Pulsed Beams[J]. Chin. Phys. Lett., 2011, 28(2): 104201
[11] CHEN Jian-Nong . Nonparaxial Propagation of a Radially Polarized Beam Diffracted by an Annular Aperture[J]. Chin. Phys. Lett., 2011, 28(12): 104201
[12] XIANG Shui-Ying**, PAN Wei, YAN Lian-Shan, LUO Bin, ZOU Xi-Hua, JIANG Ning, WEN Kun-Hua . Time-Delay Signature of Chaotic Vertical-Cavity Surface-Emitting Lasers with Polarization-Rotated Optical Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 104201
[13] WANG Jing-Li, **, YAO Jian-Quan, CHEN He-Ming, LI Zhong-Yang . A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube[J]. Chin. Phys. Lett., 2011, 28(1): 104201
[14] FU Bo, LI Shu-Guang, YAO Yan-Yan, ZHANG Lei, ZHANG Mei-Yan. Supercontinuum Generation with High Birefringence SF6 Soft Glass Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2010, 27(7): 104201
[15] WU Hua-Ming, HOU Jin, GAO Ding-Shan, ZHOU Zhi-Ping. A Multilayered Configuration Broadband Polarization Insensitive Reflector Utilizing a Multi-Subpart Profile Grating Structure[J]. Chin. Phys. Lett., 2010, 27(7): 104201
Viewed
Full text


Abstract